Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Diagnostic imaging of cardiac amyloidosis

Abstract

Systemic amyloidosis encompasses a debilitating, under-diagnosed but increasingly recognized group of disorders characterized by the extracellular deposition of misfolded proteins in one or more organs. Cardiac amyloid deposition leads to an infiltrative or restrictive cardiomyopathy and is the major contributor to poor prognosis in patients with systemic amyloidosis. In total, >30 proteins can form amyloid fibrils, but the two main types of amyloid that can infiltrate the heart are monoclonal immunoglobulin light-chain amyloid and transthyretin amyloid. Cardiac amyloidosis can be acquired in older individuals or inherited from birth. Given the nonspecific symptoms of these disorders, a high index of suspicion is paramount in making the correct diagnosis, which can involve the use of non-invasive imaging methods such as echocardiography, bone scintigraphy and cardiovascular MRI. In the past decade, the use of cardiovascular MRI with tissue characterization and bone scintigraphy to diagnose cardiac amyloidosis has revolutionized our understanding of the disease, leading to changes in patient care. However, a need remains for improved awareness and expertise, and greater clinical suspicion, because the initial clues provided by electrocardiography and echocardiography might not be typical. With specific treatments now available, timely diagnosis of cardiac amyloidosis is more important than ever. In this Review, we discuss the current and novel approaches for the diagnostic imaging of cardiac amyloidosis.

Key points

  • Cardiac amyloidosis is a life-threatening and progressive cause of heart failure that is often underdiagnosed or misdiagnosed.

  • Early and accurate diagnosis of cardiac amyloidosis is crucial for the implementation of appropriate patient care and is now more important than ever given the availability of new therapies.

  • Clinical criteria for the diagnosis of cardiac amyloidosis have been established that warrant screening of at-risk patients.

  • When cardiac amyloidosis is suspected, a definitive diagnosis can usually be achieved non-invasively through the use of imaging techniques, such as echocardiography, bone scintigraphy and cardiovascular MRI.

  • The combination of advanced cardiac imaging modalities provides valuable prognostic information and their use is paramount for the monitoring of disease progression and treatment response.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multidisciplinary work-up of a patient with transthyretin amyloid cardiomyopathy.
Fig. 2: CMR shows different pathophysiological mechanisms in cardiac amyloidosis.
Fig. 3: Whole-body Perugini visual scoring of cardiac uptake on 99mTc-DPD scintigraphy.
Fig. 4: CMR findings in left ventricular hypertrophy.
Fig. 5: Regression of cardiac amyloidosis on CMR.

Similar content being viewed by others

Peter Libby, Julie E. Buring, … Eldrin F. Lewis

References

  1. Falk, R. H., Kruger, J. & Quarta, C. C. Senile systemic amyloidosis is a markedly underdiagnosed cardiomyopathy: experience of a cardiac amyloidosis program [abstract]. J. Am. Coll. Cardiol. 61 (Suppl. 10), E1241 (2013).

    Google Scholar 

  2. Maurer, M. S., Elliott, P., Comenzo, R., Semigran, M. & Rapezzi, C. Addressing common questions encountered in the diagnosis and management of cardiac amyloidosis. Circulation 135, 1357–1377 (2017).

    PubMed Central  Google Scholar 

  3. Wechalekar, A. D., Gillmore, J. D. & Hawkins, P. N. Systemic amyloidosis. Lancet 387, 2641–2654 (2016).

    CAS  Google Scholar 

  4. Pinney, J. H. et al. Systemic amyloidosis in England: an epidemiological study. Br. J. Haematol. 161, 525–532 (2013).

    PubMed Central  Google Scholar 

  5. Gertz, M. A., Lacy, M. Q., Dispenzieri, A. & Hayman, S. R. Amyloidosis. Best Pract. Res. Clin. Haematol. 18, 709–727 (2005).

    CAS  Google Scholar 

  6. Merlini, G. CyBorD: stellar response rates in AL amyloidosis. Blood 119, 4343–4345 (2012).

    CAS  Google Scholar 

  7. Falk, R. H., Alexander, K. M., Liao, R. & Dorbala, S. AL (light-chain) cardiac amyloidosis: a review of diagnosis and therapy. J. Am. Coll. Cardiol. 68, 1323–1341 (2016).

    Google Scholar 

  8. Muchtar, E. et al. Improved outcomes for newly diagnosed AL amyloidosis between 2000 and 2014: cracking the glass ceiling of early death. Blood 129, 2111–2119 (2017).

    CAS  PubMed Central  Google Scholar 

  9. Jaccard, A. et al. Efficacy of bortezomib, cyclophosphamide and dexamethasone in treatment-naive patients with high-risk cardiac AL amyloidosis (Mayo Clinic stage III). Haematologica 99, 1479–1485 (2014).

    CAS  PubMed Central  Google Scholar 

  10. Mirzoyev, S. A. et al. Cardiac amyloid deposition is common in elderly patients with heart failure and preserved ejection fraction [abstract]. Circulation 122 (Suppl. 21), 17926 (2010).

    Google Scholar 

  11. Cornwell, G. G., Murdoch, W. L., Kyle, R. A., Westermark, P. & Pitkanen, P. Frequency and distribution of senile cardiovascular amyloid. A clinicopathologic correlation. Am. J. Med. 75, 618–623 (1983).

    Google Scholar 

  12. Tanskanen, M. et al. Senile systemic amyloidosis affects 25% of the very aged and associates with genetic variation in alpha2-macroglobulin and tau: a population-based autopsy study. Ann. Med. 40, 232–239 (2008).

    CAS  Google Scholar 

  13. Rapezzi, C. et al. Transthyretin-related amyloidoses and the heart: a clinical overview. Nat. Rev. Cardiol. 7, 398–408 (2010).

    CAS  Google Scholar 

  14. Connors, L. H., Lim, A., Prokaeva, T., Roskens, V. A. & Costello, C. E. Tabulation of human transthyretin (TTR) variants, 2003. Amyloid 10, 160–184 (2003).

    CAS  Google Scholar 

  15. Merlini, G. & Westermark, P. The systemic amyloidoses: clearer understanding of the molecular mechanisms offers hope for more effective therapies. J. Intern. Med. 255, 159–178 (2004).

    CAS  Google Scholar 

  16. Pinney, J. H. et al. Senile systemic amyloidosis: clinical features at presentation and outcome. J. Am. Heart Assoc. 2, e000098 (2013).

    PubMed Central  Google Scholar 

  17. Connors, L. H. et al. Cardiac amyloidosis in African Americans: comparison of clinical and laboratory features of transthyretin V122I amyloidosis and immunoglobulin light chain amyloidosis. Am. Heart J. 158, 607–614 (2009).

    CAS  Google Scholar 

  18. Buxbaum, J. N. & Ruberg, F. L. Transthyretin V122I (pV142I)* cardiac amyloidosis: an age-dependent autosomal dominant cardiomyopathy too common to be overlooked as a cause of significant heart disease in elderly African Americans. Genet. Med. 19, 733–742 (2017).

    CAS  PubMed Central  Google Scholar 

  19. Rapezzi, C. et al. Systemic cardiac amyloidoses: disease profiles and clinical courses of the 3 main types. Circulation 120, 1203–1212 (2009).

    CAS  Google Scholar 

  20. Gillmore, J. D. et al. A new staging system for cardiac transthyretin amyloidosis. Eur. Heart J. 39, 2799–2806 (2018).

    CAS  Google Scholar 

  21. Adams, D. et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 11–21 (2018).

    CAS  Google Scholar 

  22. Benson, M. D. et al. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 22–31 (2018).

    CAS  Google Scholar 

  23. Berk, J. L. et al. Repurposing diflunisal for familial amyloid polyneuropathy a randomized clinical trial. JAMA 310, 2658–2667 (2013).

    CAS  PubMed Central  Google Scholar 

  24. Maurer, M. S. et al. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N. Engl. J. Med. 379, 1007–1016 (2018).

    CAS  Google Scholar 

  25. Lane, T. et al. Natural history, quality of life, and outcome in cardiac transthyretin amyloidosis. Circulation 140, 16–26 (2019).

    CAS  Google Scholar 

  26. Martinez-Naharro, A., Hawkins, P. N. & Fontana, M. Cardiac amyloidosis. Clin. Med. 18, s30–s35 (2018).

    Google Scholar 

  27. Longhi, S. et al. Atrial fibrillation in amyloidotic cardiomyopathy: prevalence, incidence, risk factors and prognostic role. Amyloid 22, 147–155 (2015).

    CAS  Google Scholar 

  28. Mints, Y. Y., Doros, G., Berk, J. L., Connors, L. H. & Ruberg, F. L. Features of atrial fibrillation in wild-type transthyretin cardiac amyloidosis: a systematic review and clinical experience. ESC Heart Fail. 5, 772–779 (2018).

    PubMed Central  Google Scholar 

  29. Martinez-Naharro, A. et al. High prevalence of intracardiac thrombi in cardiac amyloidosis. J. Am. Coll. Cardiol. 73, 1733–1734 (2019).

    Google Scholar 

  30. Feng, D. et al. Intracardiac thrombosis and anticoagulation therapy in cardiac amyloidosis. Circulation 119, 2490–2497 (2009).

    CAS  Google Scholar 

  31. Grogan, M. et al. Natural history of wild-type transthyretin cardiac amyloidosis and risk stratification using a novel staging system. J. Am. Coll. Cardiol. 68, 1014–1020 (2016).

    Google Scholar 

  32. Comenzo, R. L. et al. Consensus guidelines for the conduct and reporting of clinical trials in systemic light-chain amyloidosis. Leukemia 26, 2317–2325 (2012).

    CAS  Google Scholar 

  33. Sperry, B. W. et al. Are classic predictors of voltage valid in cardiac amyloidosis? A contemporary analysis of electrocardiographic findings. Int. J. Cardiol. 214, 477–481 (2016).

    Google Scholar 

  34. Dubrey, S. W. et al. The clinical features of immunoglobulin light-chain (AL) amyloidosis with heart involvement. QJM 91, 141–157 (1998).

    CAS  Google Scholar 

  35. Murtagh, B. et al. Electrocardiographic findings in primary systemic amyloidosis and biopsy-proven cardiac involvement. Am. J. Cardiol. 95, 535–537 (2005).

    Google Scholar 

  36. Habib, G. et al. Multimodality imaging in restrictive cardiomyopathies: an EACVI expert consensus document in collaboration with the “Working Group on myocardial and pericardial diseases” of the European Society of Cardiology Endorsed by the Indian Academy of Echocardiography. Eur. Heart J. Cardiovasc. Imaging 18, 1090–1121 (2017).

    Google Scholar 

  37. Ruberg, F. L., Grogan, M., Hanna, M., Kelly, J. W. & Maurer, M. S. Transthyretin amyloid cardiomyopathy: JACC state-of-the-art review. J. Am. Coll. Cardiol. 73, 2872–2891 (2019).

    CAS  PubMed Central  Google Scholar 

  38. Cyrille, N. B., Goldsmith, J., Alvarez, J. & Maurer, M. S. Prevalence and prognostic significance of low QRS voltage among the three main types of cardiac amyloidosis. Am. J. Cardiol. 114, 1089–1093 (2014).

    Google Scholar 

  39. Dungu, J. et al. The electrocardiographic features associated with cardiac amyloidosis of variant transthyretin isoleucine 122 type in Afro-Caribbean patients. Am. Heart J. 164, 72–79 (2012).

    CAS  Google Scholar 

  40. Fontana, M. et al. Differential myocyte responses in patients with cardiac transthyretin amyloidosis and light-chain amyloidosis: a cardiac MR imaging study. Radiology 277, 388–397 (2015).

    Google Scholar 

  41. Martinez-Naharro, A. et al. Native T1 and extracellular volume in transthyretin amyloidosis. JACC Cardiovasc. Imaging 12, 810–819 (2019).

    Google Scholar 

  42. Hongo, M. et al. Comparison of electrocardiographic findings in patients with AL (primary) amyloidosis and in familial amyloid polyneuropathy and anginal pain and their relation to histopathologic findings. Am. J. Cardiol. 85, 849–853 (2000).

    CAS  Google Scholar 

  43. Pozo, E. et al. Cardiac magnetic resonance evaluation of left ventricular remodelling distribution in cardiac amyloidosis. Heart 100, 1688–1695 (2014).

    Google Scholar 

  44. Falk, R. H. Diagnosis and management of the cardiac amyloidoses. Circulation 112, 2047–2060 (2005).

    Google Scholar 

  45. Gertz, M. A. et al. Definition of organ involvement and treatment response in immunoglobulin light chain amyloidosis (AL): a consensus opinion from the 10th International Symposium on Amyloid and Amyloidosis, Tours, France, 18–22 April 2004. Am. J. Hematol. 79, 319–328 (2005).

    Google Scholar 

  46. Austin, B. A. et al. Comparison of functional status, electrocardiographic, and echocardiographic parameters to mortality in endomyocardial-biopsy proven cardiac amyloidosis. Am. J. Cardiol. 103, 1429–1433 (2009).

    Google Scholar 

  47. Knight, D. S. et al. Cardiac structural and functional consequences of amyloid deposition by cardiac magnetic resonance and echocardiography and their prognostic roles. JACC Cardiovasc. Imaging 12, 823–833 (2019).

    Google Scholar 

  48. Tsang, W. & Lang, R. M. Echocardiographic evaluation of cardiac amyloid. Curr. Cardiol. Rep. 12, 272–276 (2010).

    Google Scholar 

  49. Klein, A. L. et al. Doppler characterization of left ventricular diastolic function in cardiac amyloidosis. J. Am. Coll. Cardiol. 13, 1017–1026 (1989).

    CAS  Google Scholar 

  50. Pagourelias, E. D. et al. Echo parameters for differential diagnosis in cardiac amyloidosis: a head-to-head comparison of deformation and nondeformation parameters. Circ. Cardiovasc. Imaging 10, e005588 (2017).

    Google Scholar 

  51. Pewsner, D. et al. Ruling a diagnosis in or out with “SpPIn” and “SnNOut”: a note of caution. BMJ 329, 209–213 (2004).

    PubMed Central  Google Scholar 

  52. Phelan, D. et al. Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart 98, 1442–1448 (2012).

    Google Scholar 

  53. Senapati, A. et al. Prognostic implication of relative regional strain ratio in cardiac amyloidosis. Heart 102, 748–754 (2016).

    Google Scholar 

  54. Rapezzi, C. & Fontana, M. Relative left ventricular apical sparing of longitudinal strain in cardiac amyloidosis is it just amyloid infiltration? JACC Cardiovasc. Imaging 12, 1174–1176 (2019).

    Google Scholar 

  55. Rapezzi, C. & Fontana, M. Relative left ventricular apical sparing of longitudinal strain in cardiac amyloidosis: is it just amyloid infiltration? JACC Cardiovasc. Imaging 12, 1174–1176 (2019).

    Google Scholar 

  56. Pennell, D. J. Cardiovascular magnetic resonance: twenty-first century solutions in cardiology. Clin. Med. 3, 273–278 (2003).

    Google Scholar 

  57. Martinez-Naharro, A. et al. Magnetic resonance in transthyretin cardiac amyloidosis. J. Am. Coll. Cardiol. 70, 466–477 (2017).

    CAS  Google Scholar 

  58. White, S. K. et al. T1 mapping for myocardial extracellular volume measurement by CMR bolus only versus primed infusion technique. JACC Cardiovasc. Imaging 6, 955–962 (2013).

    Google Scholar 

  59. Reiter, T. et al. Minimizing risk of nephrogenic systemic fibrosis in cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 14, 31 (2012).

    PubMed Central  Google Scholar 

  60. Koenig, S. H., Spiller, M., Brown, R. D. III & Wolf, G. L. Relaxation of water protons in the intra- and extracellular regions of blood containing Gd(DTPA). Magn. Reson. Med. 3, 791–795 (1986).

    CAS  Google Scholar 

  61. Kim, R. J. et al. Relationship of elevated 23Na magnetic resonance image intensity to infarct size after acute reperfused myocardial infarction. Circulation 100, 185–192 (1999).

    CAS  Google Scholar 

  62. Rehwald, W. G., Fieno, D. S., Chen, E. L., Kim, R. J. & Judd, R. M. Myocardial magnetic resonance imaging contrast agent concentrations after reversible and irreversible ischemic injury. Circulation 105, 224–229 (2002).

    Google Scholar 

  63. Maceira, A. M. et al. Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 111, 186–193 (2005).

    Google Scholar 

  64. Fontana, M., Chung, R., Hawkins, P. N. & Moon, J. C. Cardiovascular magnetic resonance for amyloidosis. Heart Fail. Rev. 20, 133–144 (2015).

    CAS  Google Scholar 

  65. Kwong, R. Y. & Falk, R. H. Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 111, 122–124 (2005).

    Google Scholar 

  66. Fontana, M. et al. A case report in cardiovascular magnetic resonance: the contrast agent matters in amyloid. BMC Med. Imaging 17, 3 (2017).

    PubMed Central  Google Scholar 

  67. Moon, J. C. et al. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J. Cardiovasc. Magn. Reson. 15, 92 (2013).

    PubMed Central  Google Scholar 

  68. Kellman, P., Arai, A. E., McVeigh, E. R. & Aletras, A. H. Phase-sensitive inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement. Magn. Reson. Med. 47, 372–383 (2002).

    PubMed Central  Google Scholar 

  69. Fontana, M. et al. Prognostic value of late gadolinium enhancement cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 132, 1570–1579 (2015).

    CAS  PubMed Central  Google Scholar 

  70. Bollee, G. et al. Presentation and outcome of patients with systemic amyloidosis undergoing dialysis. Clin. J. Am. Soc. Nephrol. 3, 375–381 (2008).

    PubMed Central  Google Scholar 

  71. Lachmann, H. J. & Gillmore, J. D. Renal amyloidosis. Br. J. Hosp. Med. 71, 83–86 (2010).

    Google Scholar 

  72. Fontana, M. et al. Native T1 mapping in transthyretin amyloidosis. JACC Cardiovasc. Imaging 7, 157–165 (2014).

    Google Scholar 

  73. Karamitsos, T. D. et al. Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc. Imaging 6, 488–497 (2013).

    Google Scholar 

  74. Sado, D. M. et al. Identification and assessment of Anderson-Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping. Circ. Cardiovasc. Imaging 6, 392–398 (2013).

    Google Scholar 

  75. Baggiano, A. et al. Noncontrast magnetic resonance for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging 13, 69–80 (2020).

    Google Scholar 

  76. Banypersad, S. M. et al. T1 mapping and survival in systemic light-chain amyloidosis. Eur. Heart J. 36, 244–251 (2015).

    Google Scholar 

  77. Banypersad, S. M. et al. Quantification of myocardial extracellular volume fraction in systemic AL amyloidosis: an equilibrium contrast cardiovascular magnetic resonance study. Circ. Cardiovasc. Imaging 6, 34–39 (2013).

    Google Scholar 

  78. Martinez-Naharro, A. et al. CMR-verified regression of cardiac AL amyloid after chemotherapy. JACC Cardiovasc. Imaging 11, 152–154 (2018).

    Google Scholar 

  79. Kotecha, T. et al. Myocardial edema and prognosis in amyloidosis. J. Am. Coll. Cardiol. 71, 2919–2931 (2018).

    Google Scholar 

  80. Kellman, P. et al. Myocardial perfusion cardiovascular magnetic resonance: optimized dual sequence and reconstruction for quantification. J. Cardiovasc. Magn. Reson. 19, 43 (2017).

    PubMed Central  Google Scholar 

  81. Shirahama, T. & Cohen, A. S. High-resolution electron microscopic analysis of the amyloid fibril. J. Cell Biol. 33, 679–708 (1967).

    CAS  PubMed Central  Google Scholar 

  82. Nordlinger, M., Magnani, B., Skinner, M. & Falk, R. H. Is elevated plasma B-natriuretic peptide in amyloidosis simply a function of the presence of heart failure? Am. J. Cardiol. 96, 982–984 (2005).

    CAS  Google Scholar 

  83. Martinez-Naharro, A. et al. Routine identification of hypoperfusion in cardiac amyloidosis by myocardial blood flow mapping [abstract 028]. Heart 103 (Suppl. 1), A24 (2017).

    Google Scholar 

  84. Wizenberg, T. A., Muz, J., Sohn, Y. H., Samlowski, W. & Weissler, A. M. Value of positive myocardial technetium-99m-pyrophosphate scintigraphy in the noninvasive diagnosis of cardiac amyloidosis. Am. Heart J. 103, 468–473 (1982).

    CAS  Google Scholar 

  85. Puille, M. et al. 99mTc-DPD scintigraphy in transthyretin-related familial amyloidotic polyneuropathy. Eur. J. Nucl. Med. Mol. Imaging 29, 376–379 (2002).

    CAS  Google Scholar 

  86. Bokhari, S., Shahzad, R., Castano, A. & Maurer, M. S. Nuclear imaging modalities for cardiac amyloidosis. J. Nucl. Cardiol. 21, 175–184 (2014).

    PubMed Central  Google Scholar 

  87. Bokhari, S. et al. (99m)Tc-pyrophosphate scintigraphy for differentiating light-chain cardiac amyloidosis from the transthyretin-related familial and senile cardiac amyloidoses. Circ. Cardiovasc. Imaging 6, 195–201 (2013).

    PubMed Central  Google Scholar 

  88. Castano, A. et al. Multicenter study of planar technetium 99m pyrophosphate cardiac imaging: predicting survival for patients with ATTR cardiac amyloidosis. JAMA Cardiol. 1, 880–889 (2016).

    Google Scholar 

  89. Perugini, E. et al. Noninvasive etiologic diagnosis of cardiac amyloidosis using 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy. J. Am. Coll. Cardiol. 46, 1076–1084 (2005).

    Google Scholar 

  90. Rapezzi, C. et al. Role of (99m)Tc-DPD scintigraphy in diagnosis and prognosis of hereditary transthyretin-related cardiac amyloidosis. JACC Cardiovasc. Imaging 4, 659–670 (2011).

    Google Scholar 

  91. Papantoniou, V. et al. Imaging of cardiac amyloidosis by (99m)Tc-PYP scintigraphy. Hell. J. Nucl. Med. 18, 42–50 (2015).

    Google Scholar 

  92. Galat, A. et al. Usefulness of (99m)Tc-HMDP scintigraphy for the etiologic diagnosis and prognosis of cardiac amyloidosis. Amyloid 22, 210–220 (2015).

    CAS  Google Scholar 

  93. Glaudemans, A. W. et al. Bone scintigraphy with (99m)technetium-hydroxymethylene diphosphonate allows early diagnosis of cardiac involvement in patients with transthyretin-derived systemic amyloidosis. Amyloid 21, 35–44 (2014).

    CAS  Google Scholar 

  94. Rapezzi, C., Gagliardi, C. & Milandri, A. Analogies and disparities among scintigraphic bone tracers in the diagnosis of cardiac and non-cardiac ATTR amyloidosis. J. Nucl. Cardiol. 26, 1638–1641 (2019).

    Google Scholar 

  95. Pilebro, B. et al. (99m)Tc-DPD uptake reflects amyloid fibril composition in hereditary transthyretin amyloidosis. Ups. J. Med. Sci. 121, 17–24 (2016).

    PubMed Central  Google Scholar 

  96. Stats, M. A. & Stone, J. R. Varying levels of small microcalcifications and macrophages in ATTR and AL cardiac amyloidosis: implications for utilizing nuclear medicine studies to subtype amyloidosis. Cardiovasc. Pathol. 25, 413–417 (2016).

    CAS  Google Scholar 

  97. Falk, R. H., Lee, V. W., Rubinow, A., Hood, W. B. Jr. & Cohen, A. S. Sensitivity of technetium-99m-pyrophosphate scintigraphy in diagnosing cardiac amyloidosis. Am. J. Cardiol. 51, 826–830 (1983).

    CAS  Google Scholar 

  98. Hutt, D. F. et al. Utility and limitations of 3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy in systemic amyloidosis. Eur. Heart J. Cardiovasc. Imaging 15, 1289–1298 (2014).

    Google Scholar 

  99. Gillmore, J. D. et al. Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation 133, 2404–2412 (2016).

    CAS  Google Scholar 

  100. Vandenberghe, R. et al. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann. Neurol. 68, 319–329 (2010).

    Google Scholar 

  101. Bateman, R. J. et al. Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N. Engl. J. Med. 367, 795–804 (2012).

    CAS  PubMed Central  Google Scholar 

  102. Dorbala, S. et al. Imaging cardiac amyloidosis: a pilot study using (18)F-florbetapir positron emission tomography. Eur. J. Nucl. Med. Mol. Imaging 41, 1652–1662 (2014).

    CAS  Google Scholar 

  103. Osborne, D. R., Acuff, S. N., Stuckey, A. & Wall, J. S. A routine PET/CT protocol with streamlined calculations for assessing cardiac amyloidosis using (18)F-florbetapir. Front. Cardiovasc. Med. 2, 23 (2015).

    PubMed Central  Google Scholar 

  104. Antoni, G. et al. In vivo visualization of amyloid deposits in the heart with 11C-PIB and PET. J. Nucl. Med. 54, 213–220 (2013).

    CAS  Google Scholar 

  105. Lee, S. P. et al. 11C-Pittsburgh B PET imaging in cardiac amyloidosis. JACC Cardiovasc. Imaging 8, 50–59 (2015).

    Google Scholar 

  106. Law, W. P., Wang, W. Y., Moore, P. T., Mollee, P. N. & Ng, A. C. Cardiac amyloid imaging with 18F-florbetaben PET: a pilot study. J. Nucl. Med. 57, 1733–1739 (2016).

    CAS  Google Scholar 

  107. Paulus, W. J. et al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur. Heart J. 28, 2539–2550 (2007).

    Google Scholar 

  108. Komajda, M. & Lam, C. S. Heart failure with preserved ejection fraction: a clinical dilemma. Eur. Heart J. 35, 1022–1032 (2014).

    CAS  Google Scholar 

  109. Gonzalez-Lopez, E. et al. Wild-type transthyretin amyloidosis as a cause of heart failure with preserved ejection fraction. Eur. Heart J. 36, 2585–2594 (2015).

    CAS  Google Scholar 

  110. Treibel, T. A. et al. Occult transthyretin cardiac amyloid in severe calcific aortic stenosis: prevalence and prognosis in patients undergoing surgical aortic valve replacement. Circ. Cardiovasc. Imaging 9, e005066 (2016).

    Google Scholar 

  111. Longhi, S. et al. Identification of TTR-related subclinical amyloidosis with 99mTc-DPD scintigraphy. JACC Cardiovasc. Imaging 7, 531–532 (2014).

    Google Scholar 

  112. Cavalcante, J. L. et al. Cardiac amyloidosis is prevalent in older patients with aortic stenosis and carries worse prognosis. J. Cardiovasc. Magn. Reson. 19, 98 (2017).

    PubMed Central  Google Scholar 

  113. Castano, A. et al. Unveiling transthyretin cardiac amyloidosis and its predictors among elderly patients with severe aortic stenosis undergoing transcatheter aortic valve replacement. Eur. Heart J. 38, 2879–2887 (2017).

    PubMed Central  Google Scholar 

  114. Moon, J. C. et al. Gadolinium enhanced cardiovascular magnetic resonance in Anderson-Fabry disease. Evidence for a disease specific abnormality of the myocardial interstitium. Eur. Heart J. 24, 2151–2155 (2003).

    Google Scholar 

  115. Shah, K. B. et al. Transthyretin cardiac amyloidosis in black Americans. Circ. Heart Fail. 9, e002558 (2016).

    CAS  PubMed Central  Google Scholar 

  116. Vogelsberg, H. et al. Cardiovascular magnetic resonance in clinically suspected cardiac amyloidosis: noninvasive imaging compared to endomyocardial biopsy. J. Am. Coll. Cardiol. 51, 1022–1030 (2008).

    Google Scholar 

  117. Austin, B. A. et al. Delayed hyper-enhancement magnetic resonance imaging provides incremental diagnostic and prognostic utility in suspected cardiac amyloidosis. JACC Cardiovasc. Imaging 2, 1369–1377 (2009).

    Google Scholar 

  118. Ruberg, F. L. et al. Diagnostic and prognostic utility of cardiovascular magnetic resonance imaging in light-chain cardiac amyloidosis. Am. J. Cardiol. 103, 544–549 (2009).

    Google Scholar 

  119. Syed, I. S. et al. Role of cardiac magnetic resonance imaging in the detection of cardiac amyloidosis. JACC Cardiovasc. Imaging 3, 155–164 (2010).

    Google Scholar 

  120. Damy, T. et al. Prevalence and clinical phenotype of hereditary transthyretin amyloid cardiomyopathy in patients with increased left ventricular wall thickness. Eur. Heart J. 37, 1826–1834 (2016).

    Google Scholar 

  121. Sperry, B. W. et al. Tenosynovial and cardiac amyloidosis in patients undergoing carpal tunnel release. J. Am. Coll. Cardiol. 72, 2040–2050 (2018).

    Google Scholar 

  122. Fosbol, E. L. et al. Association of carpal tunnel syndrome with amyloidosis, heart failure, and adverse cardiovascular outcomes. J. Am. Coll. Cardiol. 74, 15–23 (2019).

    Google Scholar 

  123. Dispenzieri, A. et al. Superior survival in primary systemic amyloidosis patients undergoing peripheral blood stem cell transplantation: a case-control study. Blood 103, 3960–3963 (2004).

    CAS  Google Scholar 

  124. Mohty, D. et al. Left atrial size is an independent predictor of overall survival in patients with primary systemic amyloidosis. Arch. Cardiovasc. Dis. 104, 611–618 (2011).

    Google Scholar 

  125. Klein, A. L. et al. Prognostic significance of Doppler measures of diastolic function in cardiac amyloidosis. A Doppler echocardiography study. Circulation 83, 808–816 (1991).

    CAS  Google Scholar 

  126. Koyama, J. & Falk, R. H. Prognostic significance of strain Doppler imaging in light-chain amyloidosis. JACC Cardiovasc. Imaging 3, 333–342 (2010).

    Google Scholar 

  127. Siepen, F. A. D. et al. Predictors of survival stratification in patients with wild-type cardiac amyloidosis. Clin. Res. Cardiol. 107, 158–169 (2018).

    Google Scholar 

  128. Kotecha, T., Martinez-Naharro, A., Gillmore, J. D., Hawkins, P. N. & Fontana, M. Reply: Amyloidosis in the era of mass spectrometry-based proteomics. J. Am. Coll. Cardiol. 72, 1881 (2018).

    Google Scholar 

  129. Hutt, D. F. et al. Prognostic utility of the Perugini grading of 99mTc-DPD scintigraphy in transthyretin (ATTR) amyloidosis and its relationship with skeletal muscle and soft tissue amyloid. Eur. Heart J. Cardiovasc. Imaging 18, 1344–1350 (2017).

    Google Scholar 

  130. Dispenzieri, A. et al. Serum cardiac troponins and N-terminal pro-brain natriuretic peptide: a staging system for primary systemic amyloidosis. J. Clin. Oncol. 22, 3751–3757 (2004).

    CAS  Google Scholar 

  131. Emdin, M. et al. Cardiac natriuretic hormones, neuro-hormones, thyroid hormones and cytokines in normal subjects and patients with heart failure. Clin. Chem. Lab. Med. 42, 627–636 (2004).

    CAS  Google Scholar 

  132. Clerico, A. & Emdin, M. Diagnostic accuracy and prognostic relevance of the measurement of cardiac natriuretic peptides: a review. Clin. Chem. 50, 33–50 (2004).

    CAS  Google Scholar 

  133. Rysava, R. AL amyloidosis: advances in diagnostics and treatment. Nephrol. Dial. Transplant 34, 1460–1466 (2019).

    Google Scholar 

  134. Richards, D. B. et al. Therapeutic clearance of amyloid by antibodies to serum amyloid P component. N. Engl. J. Med. 373, 1106–1114 (2015).

    CAS  Google Scholar 

Download references

Acknowledgements

M.F. is supported by a British Heart Foundation Intermediate Clinical Research Fellowship (FS/18/21/33447). We thank our many physician colleagues for referring and caring for the patients.

Author information

Authors and Affiliations

Authors

Contributions

A.M.-N. researched data for the article and wrote the manuscript. All authors provided substantial contributions to discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Marianna Fontana.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks C. Rapezzi, S. Bokhari and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez-Naharro, A., Baksi, A.J., Hawkins, P.N. et al. Diagnostic imaging of cardiac amyloidosis. Nat Rev Cardiol 17, 413–426 (2020). https://doi.org/10.1038/s41569-020-0334-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-020-0334-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing