Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A suicide enzyme catalyzes multiple reactions for biotin biosynthesis in cyanobacteria

Abstract

In biotin biosynthesis, the conversion of pimeloyl intermediates to biotin is catalyzed by a universal set of four enzymes: BioF, BioA, BioD and BioB. We found that the gene homologous to bioA, the product of which is involved in the conversion of 8-amino-7-oxononanoate (AON) to 7,8-diaminononanoate (DAN), is missing in the genome of the cyanobacterium Synechocystis sp. PCC 6803. We provide structural and biochemical evidence showing that a novel dehydrogenase, BioU, is involved in biotin biosynthesis and functionally replaces BioA. This enzyme catalyzes three reactions: formation of covalent linkage with AON to yield a BioU-DAN conjugate at the ε-amino group of Lys124 of BioU using NAD(P)H, carboxylation of the conjugate to form BioU-DAN-carbamic acid, and release of DAN-carbamic acid using NAD(P)+. In this biosynthetic pathway, BioU is a suicide enzyme that loses the Lys124 amino group after a single round of reaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The biotin biosynthetic pathway and missing link in some haloarchaea and cyanobacteria.
Fig. 2: Phenotypic analysis of Synechocystis sp. PCC 6803-Δslr0355::Kmr and E. coli BW25113-ΔbioA.
Fig. 3: LC-HR-MS analysis for detection of the BioU-DAN conjugate and dethiobiotin.
Fig. 4: Proposed reaction of BioU via the BioU-DAN conjugate.
Fig. 5: Crystal structure of BioU.
Fig. 6: Proposed reaction mechanism of BioU.

Similar content being viewed by others

Data availability

Crystallographic data are available in the RCSB PDB with the identifiers 6IR4 for BioU in the resting state (P3121), 6K36 for the BioU-DAN conjugate (P3121), 6K38 for the BioU-H233A-DAN conjugate (P3121), 6ITD for AMENDA-bound BioU-K124A (P3121) and 6K37 for NAD+-bound BioU-K124A (P3121).

References

  1. Wood, H. G. & Barden, R. E. Biotin enzymes. Annu. Rev. Biochem. 46, 385–413 (1977).

    Article  CAS  Google Scholar 

  2. Hansen, D. E. & Knowles, J. R. N-carboxybiotin formation by pyruvate carboxylase: the stereochemical consequence at phosphorus. J. Am. Chem. Soc. 107, 8304–8305 (1985).

    Article  CAS  Google Scholar 

  3. Zempleni, J., Wijeratne, S. S. & Hassan, Y. I. Biotin. Biofactors 35, 36–46 (2009).

    Article  Google Scholar 

  4. Sherwood, W. G., Saunders, M., Robinson, B. H., Brewster, T. & Gravel, R. A. Lactic acidosis in biotin-responsive multiple carboxylase deficiency caused by holocarboxylase synthetase deficiency of early and late onset. J. Pediatr. 101, 546–550 (1982).

    Article  CAS  Google Scholar 

  5. Seymons, K., De Moor, A., De Raeve, H. & Lambert, J. Dermatologic signs of biotin deficiency leading to the diagnosis of multiple carboxylase deficiency. Pediatr. Dermatol. 21, 231–235 (2004).

    Article  Google Scholar 

  6. Lin, S. & Cronan, J. E. Closing in on complete pathways of biotin biosynthesis. Mol. Biosyst. 7, 1811–1821 (2011).

    Article  CAS  Google Scholar 

  7. Stoner, G. L. & Eisenberg, M. A. Purification and properties of 7,8-diaminopelargonic acid aminotransferase. J. Biol. Chem. 250, 4029–4036 (1975).

    CAS  PubMed  Google Scholar 

  8. Van Arsdell, S. W. et al. Removing a bottleneck in the Bacillus subtilis biotin pathway: BioA utilizes lysine rather than S-adenosylmethionine as the amino donor in the KAPA-to-DAPA reaction. Biotechnol. Bioeng. 91, 75–83 (2005).

    Article  Google Scholar 

  9. Wierenga, R. K., De Maeyer, M. C. H. & Hol, W. G. J. Interaction of pyrophosphate moieties with alpha-helixes in dinucleotide binding proteins. Biochemistry 24, 1346–1357 (1985).

    Article  CAS  Google Scholar 

  10. Hudson, R. C. & Daniel, R. M. l-Glutamate dehydrogenases: distribution, properties and mechanism. Comp. Biochem. Physiol. B 106, 767–792 (1993).

    Article  CAS  Google Scholar 

  11. Tang, G., Miron, D., Zhu-Shimoni, J. X. & Galili, G. Regulation of lysine catabolism through lysine-ketoglutarate reductase and saccharopine dehydrogenase in Arabidopsis. Plant Cell 9, 1305–1316 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhu, X., Tang, G. & Galili, G. The activity of the Arabidopsis bifunctional lysine-ketoglutarate reductase/saccharopine dehydrogenase enzyme of lysine catabolism is regulated by functional interaction between its two enzyme domains. J. Biol. Chem. 277, 49655–49661 (2002).

    Article  CAS  Google Scholar 

  13. Sheng, X., Gao, J., Liu, Y. & Liu, C. Theoretical study on the proton shuttle mechanism of saccharopine dehydrogenase. J. Mol. Graph. Model. 44, 17–25 (2013).

    Article  CAS  Google Scholar 

  14. Vashishtha, A. K., West, A. H. & Cook, P. F. Probing the chemical mechanism of saccharopine reductase from Saccharomyces cerevisiae using site-directed mutagenesis. Arch. Biochem. Biophys. 584, 98–106 (2015).

    Article  CAS  Google Scholar 

  15. Huang, W. et al. Mechanism of an ATP-dependent carboxylase, dethiobiotin synthetase, based on crystallographic studies of complexes with substrates and a reaction intermediate. Biochemistry 34, 10985–10995 (1995).

    Article  CAS  Google Scholar 

  16. Yang, G., Sandalova, T., Lohman, K., Lindqvist, Y. & Rendina, A. R. Active site mutants of Escherichia coli dethiobiotin synthetase: effects of mutations on enzyme catalytic and structural properties. Biochemistry 36, 4751–4760 (1997).

    Article  CAS  Google Scholar 

  17. Holm, L. & Sander, C. Dali: a network tool for protein structure comparison. Trends Biochem. Sci. 20, 478–480 (1995).

    Article  CAS  Google Scholar 

  18. Teo, I., Sedgwick, B., Kilpatrick, M. W., McCarthy, T. V. & Lindahl, T. The intracellular signal for induction of resistance to alkylating agents in E. coli. Cell 45, 315–324 (1986).

    Article  CAS  Google Scholar 

  19. Chatterjee, A. et al. Saccharomyces cerevisiae THI4p is a suicide thiamine thiazole synthase. Nature 478, 542–546 (2011).

    Article  CAS  Google Scholar 

  20. Lai, R. Y. et al. Thiamin pyrimidine biosynthesis in Candida albicans: a remarkable reaction between histidine and pyridoxal phosphate. J. Am. Chem. Soc. 134, 9157–9159 (2012).

    Article  CAS  Google Scholar 

  21. Broquist, H. P. & Snell, E. E. Biotin and bacterial growth. 1. Relation to aspartate, oleate and carbon dioxide. J. Biol. Chem. 188, 431–444 (1951).

    CAS  PubMed  Google Scholar 

  22. Cronan, J. E. Expression of the biotin biosynthetic operon of Escherichia coli is regulated by the rate of protein biotination. J. Biol. Chem. 263, 10332–10336 (1988).

    CAS  PubMed  Google Scholar 

  23. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1989).

  24. Rippka, R. Isolation and purification of cyanobacteria. Methods Enzymol. 167, 3–27 (1988).

    Article  CAS  Google Scholar 

  25. Ng, A. H., Berla, B. M. & Pakrasi, H. B. Fine-tuning of photoautotrophic protein production by combining promoters and neutral sites in the cyanobacterium Synechocystis sp. strain PCC 6803. Appl. Environ. Microbiol. 81, 6857–6863 (2015).

    Article  CAS  Google Scholar 

  26. Bordat, A., Houvenaghel, M. C. & German-Retana, S. Gibson assembly: an easy way to clone potyviral full-length infectious cDNA clones expressing an ectopic VPg. Virol. J. 12, 89 (2015).

    Article  Google Scholar 

  27. Jez, J. M., Ferrer, J. L., Bowman, M. E., Dixon, R. A. & Noel, J. P. Dissection of malonyl-coenzyme A decarboxylation from polyketide formation in the reaction mechanism of a plant polyketide synthase. Biochemistry 39, 890–902 (2000).

    Article  CAS  Google Scholar 

  28. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  29. Pannu, N. S. et al. Recent advances in the CRANK software suite for experimental phasing. Acta Crystallogr. D 67, 331–337 (2011).

    Article  CAS  Google Scholar 

  30. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  31. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article  CAS  Google Scholar 

  32. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  33. Laskowski, R. A., Macarthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by JSPS KAKENHI (grant no. 17H06168 to M.N.) and the Research Committee of B group Vitamins (to M.N.). We are grateful to the staff at Photon Factory for their assistance with data collection, which was approved by the Photon Factory Program Advisory Committee (proposals nos. 2015G546, 2017G574 and 2019G548).

Author information

Authors and Affiliations

Authors

Contributions

K.S. and K.O performed cloning of bioU genes, biochemical analysis of BioU, crystallographic analysis of BioU and X-ray data correction. K.S. also wrote the manuscript. T.S. performed genome mining for bioU. I.K. and K.T. performed genetics analysis of bioU in Synechocystis sp. PCC 6803. H.W. and N.M. synthesized 7. K.M. analyzed the reaction intermediate. T.T. performed crystallographic analysis and structure refinements. T.K. and M.N. designed the project, analyzed the data and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Makoto Nishiyama.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2, Figs. 1–14 and Note.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakaki, K., Ohishi, K., Shimizu, T. et al. A suicide enzyme catalyzes multiple reactions for biotin biosynthesis in cyanobacteria. Nat Chem Biol 16, 415–422 (2020). https://doi.org/10.1038/s41589-019-0461-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-019-0461-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing