Skip to main content
Log in

Current Measurement and Electrochemical Characterization of Gas Evolution Reactions on a Rotating Ring-Disk Electrode

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The behavior of bubbles on a rotating ring-disk electrode (RRDE) during water electrolysis has been investigated as fundamental study to evaluate gas evolution reaction electrode activity. The gas evolved on the surface of the electrode reduced the active surface area and increased the overpotential for electrolysis. We investigated how the shape of the electrode affects the bubble behavior and how to obtain an optimal non-blockage electrode surface using a Pt rotating ring disk electrode (RRDE). Standard deviation (SD) of the electrolysis currents was obtained. The value of the SD is corelated with the bubble detachment phenomenon. We found that the rotation induced flux field removes the generated bubble with decrease of the SD. So, a larger SD indicates the bubble accumulation on the electrode surface, and the surface stranding in the gas film. The ring electrode showed higher current with smaller SD than disk electrode at an overpotential for both oxygen and hydrogen evolution reaction. Therefore, a ring electrode is better than a disk electrode to evaluate gas evolution reaction. The optimum current measurement condition is using ring electrode under rotation speed higher than 2500 rpm, because dependence of current and the SD on rotating speed was small enough. Under this condition, HER at − 0.1 V, the ring electrode delivers − 260 mA cm−2, and the disk delivers − 160 mA cm−2. For OER at 2.2 V, the ring electrode delivers 195 mA cm−2, and the disk electrode delivers 130 mA cm−2. The ring electrode capture about 35% more current than disk, which might be loss by the effect of the bubble blockage. In order to get better current measurement in a gas evolution reaction, using ring electrode to remove the bubbles from the electrode surface in a high rotation speed is recommended.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Yu, M. Cao, Z. Dong, K. Li, C. Yu, J. Wang, L. Jiang, Aerophilic electrode with cone shape for continuous generation and efficient collection of H2 bubbles. Adv. Funct. Mater. 26(37), 6830–6835 (2016)

    Article  CAS  Google Scholar 

  2. C. Brussieux, P. Viers, H. Roustan, M. Rakib, Controlled electrochemical gas bubble release from electrodes entirely and partially covered with hydrophobic materials. Electrochim. Acta 56, 7194 (2011)

    Article  CAS  Google Scholar 

  3. D.L. Stojić, M.P. Marčeta, S.P. Sovilj, Š.S. Miljanić, Hydrogen generation from water electrolysis - possibilities of energy saving. J. Power Sources 118, 315 (2003)

    Article  CAS  Google Scholar 

  4. Z.D. Wei, M.B. Ji, S.G. Chen, Y. Liu, C.X. Sun, G.Z. Yin, P.K. Shen, S.H. Chan, Water electrolysis on carbon electrodes enhanced by surfactant. Electrochim. Acta 52, 3323 (2007)

    Article  CAS  Google Scholar 

  5. M. Jamialahmadi, H. Müller-Steinhagen, Effect of alcohol, organic acid and potassium chloride concentration on bubble size, bubble rise velocity and gas hold-up in bubble columns. Chem. Eng. J. 50, 47 (1992)

    Article  CAS  Google Scholar 

  6. H. Cheng, K. Scott, C. Ramshaw, Intensification of water electrolysis in a centrifugal field. J. Electrochem. Soc. 149, D172 (2002)

    Article  CAS  Google Scholar 

  7. L.J.J. Janssen, E. Barendrecht, Mass transfer at a rotating ring-cone electrode and its use to determine supersaturation of gas evolved. Electrochim. Acta 29, 1207 (1984)

    Article  CAS  Google Scholar 

  8. L.J.J. Janssen, J.J.M. Geraets, E. Barendrecht, S.D.J. van Stralen, Ohmic potential drop during alkaline water electrolysis. Electrochim. Acta 27, 1207 (1982)

    Article  CAS  Google Scholar 

  9. L.J.J. Janssen, C.W.M.P. Sillen, E. Barendrecht, S.J.D. van Stralen, Bubble behaviour during oxygen and hydrogen evolution at transparent electrodes in KOH solution. Electrochim. Acta 29, 633 (1984)

    Article  CAS  Google Scholar 

  10. L.J.J. Janssen, E. Barendrecht, Electrolytic resistance of solution layers at hydrogen and oxygen evolving electrodes in alkaline solution. Electrochim. Acta 28, 341 (1983)

    Article  CAS  Google Scholar 

  11. M.P.M.G. Weijs, L.J.J. Janssen, G.J. Visser, Ohmic resistance of solution in a vertical gas-evolving cell. J. Appl. Electrochem. 27, 371 (1997)

    Article  CAS  Google Scholar 

  12. C.W.M.P. Sillen, E. Barendrecht, L.J.J. Janssen, S.J.D. van Stralen, in Hydrogen as an Energy Vector, ed. by A. A. Strub, G. Imarisio. Gas bubble behaviour during water electrolysis (Dordrecht, Springer Netherlands, 1980), pp. 328–348

    Chapter  Google Scholar 

  13. J.A. Harrison, The application of the methods of electrode kinetics, especially the impedance, to the study of gas evolving reactions at electrodes. J. Appl. Electrochem. 15, 495 (1985)

    Article  CAS  Google Scholar 

  14. I.V. Kadija, V.M. Nakić, Ring electrode on rotating disc as a tool for investigations of gas-evolving electrochemical reactions. J. Electroanal. Chem. 34, 15 (1972)

    Article  CAS  Google Scholar 

  15. J.A. Harrison, A.T. Kuhn, The effect of bubbles on the measured electrochemical parameters during hydrogen evolution on nickel. J. Electroanal. Chem. 184, 347 (1985)

    Article  CAS  Google Scholar 

  16. L. Bai, B.E. Conway, Electrochemistry of anodic F2 evolution at carbon electrodes: bubble adherence effects in the kinetics at rotating cone electrodes. J. Appl. Electrochem. 18, 839 (1988)

    Article  CAS  Google Scholar 

  17. W. Sheng, H.A. Gasteiger, Y. Shao-Horn, Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. J. Electrochem. Soc. 157, B1529 (2010)

    Article  CAS  Google Scholar 

  18. L. Chen, A. Lasia, Study of the kinetics of hydrogen evolution reaction on nickel-zinc alloy electrodes. J. Electrochem. Soc. 138, 3321 (1991)

    Article  CAS  Google Scholar 

  19. Y. Zheng, Y. Jiao, Y. Zhu, L.H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec, S.Z. Qiao, Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 5(1) (2014)

  20. D.A. García-Osorio, R. Jaimes, J. Vazquez-Arenas, R.H. Lara, J. Alvarez-Ramirez, The kinetic parameters of the oxygen evolution reaction (OER) calculated on inactive anodes via EIS transfer functions: •OH formation. J. Electrochem. Soc. 164, E3321 (2017)

    Article  CAS  Google Scholar 

  21. T. Reier, M. Oezaslan, P. Strasser, Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials. ACS Catal. 2, 1765 (2012)

    Article  CAS  Google Scholar 

  22. G. Zhao, K. Rui, S.X. Dou, W. Sun, Heterostructures for electrochemical hydrogen evolution reaction: a review. Adv. Funct. Mater. 28, 91 (2018)

    Google Scholar 

  23. H. Matsushima, D. Kiuchi, Y. Fukunaka, Measurement of dissolved hydrogen supersaturation during water electrolysis in a magnetic field. Electrochim. Acta 54, 5858 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Development of Fundamental Technology for Advancement of Water Electrolysis Hydrogen Production in Advancement of Hydrogen Technologies and Utilization Project (JPNP14021) commissioned by the New Energy and Industrial Technology Development Organization (NEDO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigenori Mitsushima.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 764 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, Y., Nagasawa, K., Kuroda, Y. et al. Current Measurement and Electrochemical Characterization of Gas Evolution Reactions on a Rotating Ring-Disk Electrode. Electrocatalysis 11, 301–308 (2020). https://doi.org/10.1007/s12678-020-00589-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-020-00589-9

Keywords

Navigation