Skip to main content
Log in

Synthesis and characterization of Cu–Ni/Gr nanocomposite coatings by electro-co-deposition method: effect of current density

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Cu–Ni alloys are widely used and implemented due to their remarkable mechanical and electrochemical properties in most of the engineering applications. The reinforcement of graphene nanoplatelets (Gr) in Cu–Ni alloy can be utilized to enhance the properties of Cu–Ni alloy. In the present work, Ni as an alloying element and graphene nanoplatelets as reinforcing element were co-deposited with Cu to prepare Cu–Ni/Gr composite coatings by electro-co-deposition method. The influence of various current densities on surface morphology, composition, microstructure, crystallite size, lattice strain, microhardness, coefficient of friction and corrosion resistance of the resulting composite coatings were investigated and were presented in detail. Based on the experimental results, the coatings prepared at \(6\hbox { A dm}^{-2}\), exhibit a reduced grain size with enhanced mechanical properties and corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Heckman N M, Berwind M F, Eberl C and Hodge A M 2018 Acta Mater. 144 138

    CAS  Google Scholar 

  2. Zhu J, Zhang T, Yang Y and Liu C T 2019 Acta Mater. 166 560

    CAS  Google Scholar 

  3. Zhao H, Fu H, Xie M and Xie J 2018 vacuum154 190

    CAS  Google Scholar 

  4. Zhou P, Erning J W and Ogle K 2019 Electrochim. Acta 293 290

    CAS  Google Scholar 

  5. Velmurugan S, Subramanian V, Srinivasan M P, Narasimhan S V and Chandramohan P 2006 Corros. Sci. 49 620

    Google Scholar 

  6. Metikoš-Huković M, Babić R, Škugor Rončević I and Grubač Z 2011 Desalination 276 228

    Google Scholar 

  7. Szczygieł B and Kołodziej M 2005 Electrochim. Acta 50 4188

    Google Scholar 

  8. Vaezi M R, Sadrnezhaad S K and Nikzad L 2008 Colloids Surf. A: Physicochem. Eng. Asp. 315 176

    CAS  Google Scholar 

  9. Belgamwar S U and Sharma N N 2013 Mater. Sci. Eng. B 178 1452

    CAS  Google Scholar 

  10. Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V et al 2009 Nano Lett. 9 30

    CAS  Google Scholar 

  11. Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V et al 2004 Science 306 666

    CAS  Google Scholar 

  12. Zhu Y, Murali S, Cai W, Li X, Suk J W, Potts J R et al 2010 Adv. Mater. 22 3906

    CAS  Google Scholar 

  13. Ponraj N V, Azhagurajan A, Vettivel S C, Sahaya Shajan X, Nabhiraj P Y and Sivapragash M 2017 Surf. Interfaces 6 190

    CAS  Google Scholar 

  14. Geim A K and Novoselov K S 2007 Nat. Mater. 6 183

    CAS  Google Scholar 

  15. King J A, Klimek D R, Miskioglu I and Odegard G M 2013 J. Appl. Polym. Sci. 128 4217

    CAS  Google Scholar 

  16. Wang X, Wang Q, Hu Y, Tan L and Cai J 2017 Proceedings of 18th International Conference on Electronic Packaging Technology, p 1672

  17. Yasin G, Khan M A, Arif M, Shakeel M, Hassan T M, Khan W Q et al 2018 J. Alloys Compd. 755 79

    CAS  Google Scholar 

  18. Zhao C and Wang J 2014 Phys. Status Solidi: Appl. Mater. Sci. 211 2878

    CAS  Google Scholar 

  19. Brankovic G, Maksimovic V M and Nikolic N D 2011 J. Electroanal. Chem. 661 309

    Google Scholar 

  20. Ostanina T N, Uritskaya A A, Rudoi V M, Ostanin N I and Ryabova O V 2014 Russ. Chem. Bull. 63 1498

    CAS  Google Scholar 

  21. Zhang D and Zhan Z 2016 J. Alloys Compd. 658 663

    CAS  Google Scholar 

  22. Lins V F C, Cecconello E S and Matencio T 2008 J. Mater. Eng. Perform. 17 741

    CAS  Google Scholar 

  23. Xu Z 2018 in Graphene fabrication, characterizations, properties and applications H Zhu, Z Xu, D Xie and Y Feng (eds) (Elsevier: Academic Press) p 201

  24. Pellicer E, Varea A, Pané S, Sivaraman K M, Nelson B J, Suriñach S et al 2011 Surf. Coat. Technol. 205 5285

    CAS  Google Scholar 

  25. Rode S, Henninot C, Vallières C and Matlosz M 2004 J. Electrochem. Soc. 151 C405

    CAS  Google Scholar 

  26. Laszczyńska I S A, Winiarski J and Szczygieł B 2016 Appl. Surf. Sci. 369 224

    Google Scholar 

  27. Dai P Q, Zhang C, Wen J C, Rao H C and Wang Q T 2016 J. Mater. Eng. Perform. 25 594

    CAS  Google Scholar 

  28. Bakonyi I, Tóth-Kádár E, Tóth J, Becsei T, Tarnóczi T and Kamasa P 1999 J. Phys. Condens. Matter 11 963

    CAS  Google Scholar 

  29. Downs R T and Hall-Wallace M 2003 Am. Mineral. 88 247

    CAS  Google Scholar 

  30. Algul H, Tokur M, Ozcan S, Uysal M, Cetinkaya T, Akbulut H et al 2015 Appl. Surf. Sci. 359 340

    CAS  Google Scholar 

  31. Wilson A J C 1962 Proc. Phys. Soc. 80 286

    Google Scholar 

  32. Boubatra M, Azizi A, Schmerber G and Dinia A 2011 J. Mater. Sci. Mater. Electron. 22 1804

    CAS  Google Scholar 

  33. Ghosh S K, Grover A K, Dey G K and Totlani M K 2000 Surf. Coat. Technol. 126 48

    CAS  Google Scholar 

  34. Kumar C M P, Venkatesha T V and Shabadi R 2013 Mater. Res. Bull. 48 1477

    CAS  Google Scholar 

  35. Shahri Z and Allahkaram S R 2012 IJMSE 9 1

    CAS  Google Scholar 

  36. Tang Y, Yang X, Wang R and Li M 2014 Mater. Sci. Eng. A 599 247

    CAS  Google Scholar 

  37. Jo I, Hsu I-K, Lee Y J, Sadeghi M M, Kim S, Cronin S et al 2011 Nano Lett. 11 85

    CAS  Google Scholar 

  38. Haerifar M and Zandrahimi M 2013 Appl. Surf. Sci. 284 126

    CAS  Google Scholar 

  39. Ren Z, Meng N, Shehzad K, Xu Y, Qu S, Yu B et al 2015 Nanotechnology26 1

    Google Scholar 

  40. Zhang Z and Chen D L 2006 Scr. Mater. 54 1321

    CAS  Google Scholar 

  41. Lei Y, Jiang J, Bi T, Du J and Pang X 2018 RSC Adv. 8 22113

    CAS  Google Scholar 

  42. Han B and Lu X 2008 Surf. Coat. Technol. 202 3251

    CAS  Google Scholar 

  43. Jabbar A, Yasin G, Khan W Q, Anwar M Y, Korai R M, Nizam M N et al 2017 RSC Adv. 7 31100

    CAS  Google Scholar 

  44. Shakoor R A, Kahraman R, Waware U S, Wang Y and Gao W 2015 Int. J. Electrochem.Soc. 10 2110

    CAS  Google Scholar 

  45. Alizadeh M and Safaei H 2018 Appl. Surf. Sci. 456 195

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Birla Institute of Technology and Science (BITS), Pilani Campus, Rajasthan, India, for the financial support to this research. We are thankful to Ms Neelakshi Sharma, Mr M Dinachandra Singh and Prof Anshuman Dalvi of BITS, Pilani, for their help and support in X-ray diffraction. We express our sincere thanks to Dr Girish Kant from Mechanical Department, BITS, Pilani, for his support in tribological testing. We are thankful to Dr Surojit Pande from Chemistry Department, BITS, Pilani, for his support in corrosion testing. We are thankful to Material Research Centre, MNIT, Jaipur, for the technical assistance during microhardness characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay D Pingale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pingale, A.D., Belgamwar, S.U. & Rathore, J.S. Synthesis and characterization of Cu–Ni/Gr nanocomposite coatings by electro-co-deposition method: effect of current density. Bull Mater Sci 43, 66 (2020). https://doi.org/10.1007/s12034-019-2031-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-2031-x

Keywords

Navigation