Skip to main content

Advertisement

Log in

Tailoring \(\hbox {LaB}_{\mathrm {6}}\) nanoparticle-based self-healing film for heat-shielding window

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Effective insulation of near-infrared (NIR) from solar energy via the use of transparent coating on the windows is one of the most essential issues in energy savings. In this work, a novel lanthanum hexaboride (\(\hbox {LaB}_{\mathrm {6}}\))/poly(methacrylate-2-ureido-4[1H]-pyrimidinone) functionalized poly(n-butyl acrylate) (\(\hbox {PnBA-}r\hbox {-PMAUPy}\)) film was prepared via an in-situ radical polymerization method to achieve heat insulation and self-healing performance. \(\hbox {LaB}_{\mathrm {6}}\) nanoparticles synthesized by a low-temperature method were employed as a NIR shielding material, while \(\hbox {PnBA-}r\hbox {-PMAUPy}\) was utilized as a material to enhance the reliability of long-term service. Benefitting from hydrogen bonding interaction, the film showed a marked progress in self-healing property at ambient temperature. As displayed by optical absorption results, the increase of \(\hbox {LaB}_{\mathrm {6}}\) content can effectively enhance the NIR shielding ability. The NIR blocking ratio of the thermal barrier film with a thickness of 0.64 mm can reach 97.5%, and the self-healing rate is about 84% for 20 mg \(\hbox {LaB}_{\mathrm {6}}\), respectively. The self-healing film for heat-shielding window can be a promising candidate with long-term service.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Xu X, Zhang W, Hu Y, Wang Y, Lu L and Wang S 2017 Sol. Energy Mater. Sol. C168 119

    CAS  Google Scholar 

  2. Yan M, Gu H, Liu Z, Guo C and Liu S 2015 RSC Adv.5 967

    CAS  Google Scholar 

  3. Guo C, Yu H, Feng B, Gao W, Yan M, Zhang Z et al 2015 Biomaterials52 407

    CAS  Google Scholar 

  4. Chen X, Yu N, Zhang L, Liu Z, Wang Z and Chen Z 2015 RSC Adv.5 96888

    CAS  Google Scholar 

  5. Llordés A, Garcia G, Gazquez J and Milliron D J 2013 Nature500 323

    Google Scholar 

  6. Li Y Q, Wang J L, Fu S Y, Mei S G, Zhang J M and Yong K 2010 Mater. Res. Bull.45 677

    CAS  Google Scholar 

  7. Zeng X Z, Zhou Y J, Ji S D, Luo H J, Yao H L, Huang X et al 2015 J. Mater. Chem. C3 8050

    CAS  Google Scholar 

  8. Machida K, Okada M, Yoshio S and Adachi K 2016 J. Mater. Res.31 2780

    CAS  Google Scholar 

  9. Hong Y, Zhang X, Li B, Li M, Shi Q, Wang Y et al 2013 J. Rare Earth31 1096

    CAS  Google Scholar 

  10. Wang W, Yuan Y F, Zhang L and Min G H 2012 Ceram. Int.38 91

    Google Scholar 

  11. Schelm S and Smith G B 2003 Appl. Phys. Lett.82 4346

    CAS  Google Scholar 

  12. Schelm S, Smith G B, Garrett P D and Fisher W K 2005 J. Appl. Phys.97 124314

    Google Scholar 

  13. Debije M G and Verbunt P P C 2011 Adv. Energy Mater.2 12

    Google Scholar 

  14. Lai Y, Kuang X, Zhu P, Huang M, Dong X and Wang D 2018 Adv. Mater.30 1802556

    Google Scholar 

  15. Guruvenket S, Rao G M and Komath M 2004 Appl. Surf. Sci.236 278

    CAS  Google Scholar 

  16. Chen H, Liang Y, Wang M, Lv P and Xuan Y 2009 Chem. Eng. J.147 297

    CAS  Google Scholar 

  17. Zong G, Chen H, Qu R, Wang C and Ji N 2011 J. Hazard. Mater.186 614

    CAS  Google Scholar 

  18. Diesendruck C E, Sottos N R, Moore J S and White S R 2015 Angew. Chem. Int. Ed.54 10428

    CAS  Google Scholar 

  19. Mukhopadhyay P, Fujita N, Takada A, Kishida T, Shirakawa M and Shinkai S 2010 Angew. Chem. Int. Ed.49 6338

    CAS  Google Scholar 

  20. Chen M F, Fan D C, Liu S M, Dong Y L, Wang W X, Chen H et al 2019 Polym. Chem.10 503

    CAS  Google Scholar 

  21. Liu S, Rao Z, Wu R, Sun Z, Yuan Z, Bai L et al 2019 J. Agric. Food Chem.67 1061

    CAS  Google Scholar 

  22. Ma A, Zhang J, Wang N, Bai L, Chen H, Wang W et al 2018 Ind. Eng. Chem. Res.57 17417

    CAS  Google Scholar 

  23. Rao Z, Liu S, Wu R, Wang G, Sun Z, Bai L et al 2019 Int. J. Biol. Macromol.129 916

    CAS  Google Scholar 

  24. Thakur V K and Kessler M R 2015 Polymer69 369

    CAS  Google Scholar 

  25. Ullah H, Azizli K A M, Man Z B, Ismail M B C and Khan M I 2016 Polym. Rev.56 429

    CAS  Google Scholar 

  26. Guimard N K, Oehlenschlaeger K K, Zhou J, Hilf S, Schmidt F G and Barner-Kowollik C 2012 Macromol. Chem. Phys.213 131

    CAS  Google Scholar 

  27. Hu L, Cheng X and Zhang A 2014 J. Mater. Sci.50 2239

    Google Scholar 

  28. Chen M, Wang W, Chen H, Bai L, Xue Z, Wei D et al 2019 Macromol. Res.27 96

    CAS  Google Scholar 

  29. Fan D, Wang W, Chen H, Bai L, Yang H, Wei D et al 2019 New J. Chem.43 3099

    CAS  Google Scholar 

  30. Haraguchi K, Uyama K and Tanimoto H 2011 Macromol. Rapid Commun.32 1253

    CAS  Google Scholar 

  31. Rong Q, Lei W, Chen L, Yin Y, Zhou J and Liu M 2017 Angew. Chem. Int. Ed.56 14159

    CAS  Google Scholar 

  32. Chen K, Zhou S, Yang S and Wu L 2015 Adv. Funct. Mater.25 1035

    CAS  Google Scholar 

  33. Chen S, Bi X, Sun L, Gao J, Huang P, Fan X et al 2016 ACS Appl. Mater. Interfaces8 20591

    CAS  Google Scholar 

  34. Long T J, Li Y X, Fang X and Sun J Q 2018 Adv. Funct. Mater.28 1804416

    Google Scholar 

  35. Wang Y, Liu X K, Li S H, Li T Q, Song Y, Li Z D et al 2017 ACS Appl. Mater. Interfaces9 29120

    CAS  Google Scholar 

  36. Wang X H, Li Y X, Qian Y H, Qi H, Li J Q and Sun J 2018 Adv. Mater.30 1803854

    Google Scholar 

  37. Faghihnejad A, Feldman K E, Yu J, Tirrell M V, Israelachvili J N, Hawker C J et al 2014 Adv. Funct. Mater.24 2322

    CAS  Google Scholar 

  38. Hart L R, Harries J L, Greenland B W, Colquhoun H M and Hayes W 2013 Polym. Chem.4 4860

    CAS  Google Scholar 

  39. Wang Y, Zhang C, Yang L, Bai L, Yang H, Wang W et al 2019 Adv. Powder Technol.30 1174

    CAS  Google Scholar 

  40. Park T and Zimmerman Steven C 2006 J. Am. Chem. Soc.128 14236

    CAS  Google Scholar 

  41. Portehault D, Devi S, Beaunier P, Gervais C, Giordano C, Sanchez C et al 2011 Angew. Chem. Int. Ed.123 320

    Google Scholar 

  42. Hang C, Yang L, Liang Y, Jin R, Wang F, Xu Y et al 2018 Ceram. Int.44 8427

    CAS  Google Scholar 

  43. Chang T, Cao X, Li N, Long S, Zhu Y, Huang J et al 2019 Matter 1 1

    CAS  Google Scholar 

  44. Chen Y, Zeng X, Zhou Y, Li R, Yao H, Cao X et al 2018 Ceram. Int.44 2738

    CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Nos. 51773086 and 51973086), the Key Program for Basic Research of Natural Science Foundation of Shandong Province (No. ZR2018ZC0946), the Natural Science Foundation of Shandong Province (Nos. ZR2019MEM042 and ZR2018BB027) and the Project of Shandong Province Higher Educational Science (Nos. J16LC20 and J18KA080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixia Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 1300 KB)

Supplementary material 2 (mov 151321 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Zhang, C., Yang, L. et al. Tailoring \(\hbox {LaB}_{\mathrm {6}}\) nanoparticle-based self-healing film for heat-shielding window. Bull Mater Sci 43, 62 (2020). https://doi.org/10.1007/s12034-019-2028-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-2028-5

Keywords

Navigation