Skip to main content

Advertisement

Log in

Effect of sintering pressure on electrical transport and thermoelectric properties of polycrystalline SnSe

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Tin selenide (SnSe), which has high thermoelectric (TE) performance due to its low thermal conductivity, is considered as a promising TE material. It is good that TE properties were reported in single crystal form because polycrystalline SnSe exhibits low electrical conductivity compared to that of single crystal SnSe. To improve the electrical conductivity of polycrystalline SnSe, the effects of the pressure applied during spark plasma sintering (SPS) on the electrical charge transport and the TE properties of the polycrystalline SnSe were investigated. Degree of texture was enhanced with increasing sintering pressure from 30 to 120 MPa during SPS, which lead to the increase in carrier mobility, which resulted in the increase in electrical conductivity. Increase in pressure led to a significant increase in thermal conductivity due to an increase in the lattice thermal conductivity, which can be attributed to the decrease in phonon scattering at the grain boundary. A ZT of \({\sim }0.7\) was obtained at 823 K from the polycrystalline SnSe sintered with a pressure of 60 MPa, which can result from large increase in electrical conductivity with very small increase in the thermal conductivity. This study shows that the TE properties of the polycrystalline SnSe can be enhanced by controlling the degree of texture which can be accomplished by changing the pressure applied during SPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. De Vries B J, Van Vuuren D P and Hoogwijk M M 2007 Energy Policy 35 2590

    Google Scholar 

  2. Demirbas A 2009 Energy Source: Part B 4 212

    Google Scholar 

  3. Rowe D M (ed.) 1995 Thermoelectrics handbook: macro to nano (Florida: CRC Press)

  4. Bell L E 2008 Science 321 1457

    CAS  Google Scholar 

  5. Nolas G S, Sharp J and Goldsmid J (eds) 2013 Thermoelectrics: basic principles and new materials developments (New York: Springer)

  6. Zhang X and Zhao L D 2015 J. Materiomics 1 92

    Google Scholar 

  7. Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C et al 2004 Science 303 818

    CAS  Google Scholar 

  8. Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B et al 2008 Science 320 634

    CAS  Google Scholar 

  9. Xie W, Tang X, Yan Y, Zhang Q and Tritt T M 2009 Appl. Phys. Lett. 94 102111

    Google Scholar 

  10. Bathula S, Jayasimhadri M, Singh N, Srivastava A, Pulikkotil J, Dhar A et al 2012 Appl. Phys. Lett. 101 213902

    Google Scholar 

  11. Yu B, Zebarjadi M, Wang H, Lukas K, Wang H, Wang D et al 2012 Nano Lett. 12 2077

    CAS  Google Scholar 

  12. Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C et al 2014 Nature 508 373

    CAS  Google Scholar 

  13. Zhao L D, Tan G, Hao S, He J, Pei Y, Chi H et al 2016 Science 351 141

    CAS  Google Scholar 

  14. Ortiz B R, Peng H, Lopez A, Parilla P A, Lany S and Toberer E S 2015 Phys. Chem. Chem. Phys. 17 19410

    CAS  Google Scholar 

  15. Zhao L D, Chang C, Tan G J and Kanatzidis M G 2016 Energy Environ. Sci. 9 3044

    CAS  Google Scholar 

  16. Chen C L, Wang H, Chen Y Y, Day T and Snyder G J 2014 J. Mater. Chem. A 2 11171

    CAS  Google Scholar 

  17. Zhang L, Wang J, Sun Q, Qin P, Cheng Z, Ge Z et al 2017 Adv. Energy Mater. 7 1700573

    Google Scholar 

  18. Wei T R, Tan G, Zhang X, Wu C F, Li J F, Dravid V P et al 2016 J. Am. Chem. Soc. 138 8875

    CAS  Google Scholar 

  19. Singh N K, Bathula S, Gahtori B, Tyagi K, Haranath D and Dhar A 2016 J. Alloys Compd. 668 152

    CAS  Google Scholar 

  20. Li J, Li D, Qin X and Zhang J 2017 Scr. Mater. 126 6

    CAS  Google Scholar 

  21. Ge Z H, Song D, Chong X, Zheng F, Jin L, Qian X et al 2017 J. Am. Chem. Soc. 139 9714

    CAS  Google Scholar 

  22. Chandra S, Banik A and Biswas K 2018 ACS Energy. Lett. 3 1153

    CAS  Google Scholar 

  23. Chandra S and Banik A 2019 J. Am. Chem. Soc. 141 6141

    CAS  Google Scholar 

  24. Banik A, Roychowdhury S and Biswas K 2018 ChemComm 54 6573

    CAS  Google Scholar 

  25. Popuri S R, Pollet M, Decourt R, Morrison F D, Bennett N S and Bos J W G 2016 J. Mater. Chem. C 4 1685

    CAS  Google Scholar 

  26. Fu Y, Xu J, Liu G Q, Yang J, Tan X, Liu Z et al 2016 J. Mater. Chem. C 4 1201

    CAS  Google Scholar 

  27. Wang X, Xu T J, Liu G Q, Tan X J, Li D B, Shao H Z et al 2017 NPG Asia Mater. 9 6

    Google Scholar 

  28. Feng D, Ge Z H, Wu D, Chen Y X, Wu T, Li J et al 2016 Phys. Chem. Chem. Phys. 18 31821

    CAS  Google Scholar 

  29. Song M S, Choi S M, Seo W S, Moon J and Jang K W 2012 J. Korean Phys. Soc. 60 1735

    CAS  Google Scholar 

  30. Li D, Li J C, Qin X Y, Zhang J, Song C J, Wang L et al 2017 J. Electron. Mater. 46 79

    Google Scholar 

  31. Zou P, Xu G Y, Wang S, Chen P L and Huang F Z 2014 Proc. Natl. Sci. 24 210

    CAS  Google Scholar 

  32. Han L, Spangsdorf S H, Nong N V, Hung L T, Zhang Y B, Pham H N et al 2016 RSC Adv. 6 59565

    CAS  Google Scholar 

  33. Sui J H, Li J, He J Q, Pei Y L, Berardan D, Wu H J et al 2013 Energy Environ. Sci. 6 2916

    CAS  Google Scholar 

  34. Mei C, Li Y, Li G D, Li M F and Zhai P C 2009 J. Electron. Mater. 38 1194

    CAS  Google Scholar 

  35. He J, Xu J T, Tan X J, Liu G Q, Shao H Z, Liu Z et al 2016 J. Materiomics 2 165

    Google Scholar 

  36. Kim J H, Song Y J, Rhyee J S, Kim B S, Park S D, Lee H J et al 2013 Phys. Rev. B 87 6

    Google Scholar 

  37. Lotgering F 1959 J. Inorg. Nucl. Chem. 9 113

    CAS  Google Scholar 

  38. Sassi S, Candolfi C, Vaney J B, Ohorodniichuk V, Masschelein P, Dauscher A et al 2014 Appl. Phys. Lett. 104 212105

    Google Scholar 

  39. Fu Y J, Xu J T, Liu G Q, Yang J K, Tan X J, Liu Z et al 2016 J. Mater. Chem. C 4 1201

    CAS  Google Scholar 

  40. Yan J, Ke F, Liu C, Wang L, Wang Q, Zhang J et al 2016 Phys. Chem. Chem. Phys. 18 5012

    CAS  Google Scholar 

  41. Ghosh A, Gusmão M, Chaudhuri P, de Souza S M, Mota C, Trichês D et al 2016 Comput. Condens. Matter 9 77

  42. Maycock P 1967 Solid. State Electron. 10 161

    CAS  Google Scholar 

  43. Li Y, Li F, Dong J, Ge Z, Kang F, He J et al 2016 J. Mater. Chem. C 4 2047

    CAS  Google Scholar 

  44. Leng H 2016 J. Electron. Mater. 45 527

    CAS  Google Scholar 

  45. Gao J and Xu G 2017 Intermetallics 87 40

    Google Scholar 

  46. Liang X 2017 Phys. Rev. B 95 7

    Google Scholar 

  47. Wang S, Hui S, Peng K L, Bailey T P, Zhou X Y, Tang X F et al 2017 J. Mater. Chem. C 5 10191

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) (No. NRF-2015R1A5A1037627) and Institute of Engineering Research at Seoul National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, J.Y., Siyar, M., Bae, S.H. et al. Effect of sintering pressure on electrical transport and thermoelectric properties of polycrystalline SnSe. Bull Mater Sci 43, 63 (2020). https://doi.org/10.1007/s12034-020-2036-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-2036-5

Keywords

Navigation