Skip to main content
Log in

Capsaicin Exerts Anti-convulsant and Neuroprotective Effects in Pentylenetetrazole-Induced Seizures

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

A Correction to this article was published on 25 February 2020

This article has been updated

Abstract

The transient receptor potential vanilloid-1 (TRPV1) receptor has been implicated in the development of epileptic seizures. We examined the effect of the TRPV1 agonist capsaicin on epileptic seizures, neuronal injury and oxidative stress in a model of status epilepticus induced in the rat by intraperitoneal (i.p.) injections of pentylenetetrazole (PTZ). Capsaicin was i.p. given at 1 or 2 mg/kg, 30 min before the first PTZ injection. Other groups were i.p. treated with the vehicle or the anti-epileptic drug phenytoin (30 mg/kg) alone or co-administered with capsaicin at 2 mg/kg. Brain levels of malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide, and paraoxonase-1 (PON-1) activity, seizure scores, latency time and PTZ dose required to reach status epilepticus were determined. Histopathological assessment of neuronal damage was done. Results showed that brain MDA decreased by treatment with capsaicin, phenytoin or capsaicin/phenytoin. Nitric oxide decreased by capsaicin or capsaicin/phenytoin. GSH and PON-1 activity increased after capsaicin, phenytoin or capsaicin/phenytoin. Mean total seizure score decreased by 48.8% and 66.3% by capsaicin compared with 78.7% for phenytoin and 69.8% for capsaicin/phenytoin treatment. Only phenytoin increased the latency (115.7%) and threshold dose of PTZ (78.3%). Capsaicin did not decrease the anti-convulsive effect of phenytoin but prevented the phenytoin-induced increase in latency time and threshold dose. Neuronal damage decreased by phenytoin or capsaicin at 2 mg/kg but almost completely prevented by capsaicin/phenytoin. Thus in this model of status epilepticus, capsaicin decreased brain oxidative stress, the severity of seizures and neuronal injury and its co-administration with phenytoin afforded neuronal protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 25 February 2020

    The original version of this article unfortunately contains an error in the Y axis units in Fig. 1b, c (the symbol µ is not clear: µmol/g.tissue). This has been corrected by publishing this erratum.

References

  1. de Boer HM, Mula M, Sander JW (2008) The global burden and stigma of epilepsy. Epilepsy Behav 12(4):540–546. https://doi.org/10.1016/j.yebeh.2007.12.019

    Article  PubMed  Google Scholar 

  2. Bowman, Dudek FE, Spitz M (2001) Epilepsy. In: Encyclopedia of life sciences (Wiley Interscience). Nature Publishing Group. http://www.els.net. https://doi.org/10.1038/npg.els.0000100

  3. Stafstrom CE, Carmant L (2015) Seizures and epilepsy: an overview for neuroscientists. Cold Spring Harb Perspect Med 5(6):a022426. https://doi.org/10.1101/cshperspect.a022426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Manford M (2017) Recent advances in epilepsy. J Neurol 264:1811–1824. doi:https://doi.org/10.1007/s00415-017-8394-2

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rowley S, Patel M (2013) Mitochondrial involvement and oxidative stress in temporal lobe epilepsy. Free Radic Biol Med 62:121–131. doi:https://doi.org/10.1016/j.freeradbiomed.2013.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Geronzi U, Lotti F, Grosso S (2018) Oxidative stress in epilepsy. Expert Rev Neurother 18(5):427–434

    CAS  PubMed  Google Scholar 

  7. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    CAS  PubMed  Google Scholar 

  8. Halliwell B (2009) The wanderings of a free radical. Free Radical Biol Med 46:531–542

    CAS  Google Scholar 

  9. Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82(2):291–295

    CAS  PubMed  Google Scholar 

  10. Davis RE, Williams M (2012) Mitochondrial function and dysfunction: an update. J Pharmacol Exp Ther 342(3):342:598–607

    Google Scholar 

  11. Chang SJ, Yu BC (2010) Mitochondrial matters of the brain: mitochondrial dysfunction and oxidative status in epilepsy. J Bioenerg Biomembr 42(6):457–459. doi:https://doi.org/10.1007/s10863-010-9317-4

    Article  CAS  PubMed  Google Scholar 

  12. Bhattacharya S (2015) Reactive oxygen species and cellular defense system. In: Rani V, Yadav UCS (eds) Free Radic Hum Health Dis. Springer, New Delhi, pp 17–29. https://doi.org/10.1007/978-81-322-2035-0_2

    Chapter  Google Scholar 

  13. Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716

    CAS  PubMed  Google Scholar 

  14. Lorigados Pedre L, Gallardo JM, Morales Chacón LM et al (2018) Oxidative stress in patients with drug resistant partial complex seizure. Behav Sci (Basel) 8(6):E59. https://doi.org/10.3390/bs8060059

    Article  Google Scholar 

  15. Lee TH, Lee JG, Yon JM et al (2011) Capsaicin prevents kainic acid-induced epileptogenesis in mice. Neurochem Int 2011 58(6):634–640. doi:https://doi.org/10.1016/j.neuint.2011.01.027

    Article  CAS  PubMed  Google Scholar 

  16. Barrett KT, Wilson RJA, Scantlebury MH (2016) TRPV1 deletion exacerbates hyperthermic seizures in anage-dependent manner in mice. Epilepsy Res 128:27–34

    CAS  PubMed  Google Scholar 

  17. Sun FJ, Guo W, Zheng DH et al (2013) Increased expression of TRPV1 in the cortex and hippocampus from patients with mesial temporal lobe epilepsy. J Mol Neurosci 49(1):182–193. doi:https://doi.org/10.1007/s12031-012-9878-2

    Article  CAS  PubMed  Google Scholar 

  18. Caterina MJ, Schumacher MA, Tominaga M et al (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389(6653):816–824

    CAS  PubMed  Google Scholar 

  19. Nagy I, Friston D, Valente JS et al (2014) Pharmacology of the capsaicin receptor, transient receptor potential vanilloid type-1 ion channel. In: Abdel-Salam OME (ed) Capsaicin as a therapeutic molecule. Progress in drug research, vol 68. Springer, Basel, pp 39–76

    Google Scholar 

  20. Szolcsányi J (2014) Capsaicin and sensory neurones: a historical perspective. In: Abdel-Salam OME (ed) Capsaicin as a therapeutic molecule. Progress in drug research. Springer, Basel, pp 1–37

    Google Scholar 

  21. Steenland HW, Ko SW, Wu LJ et al (2006) Hot receptors in the brain. Mol Pain 2:34

    PubMed  PubMed Central  Google Scholar 

  22. Starowicz K, Cristino L, Di Marzo V (2008) TRPV1 receptors in the central nervous system: potential for previously unforeseen therapeutic applications. Curr Pharm Des 14(1):42–54

    CAS  PubMed  Google Scholar 

  23. Dhir A (2012) Pentylenetetrazol (PTZ) kindling model of epilepsy. Curr Protoc Neurosci.https://doi.org/10.1002/0471142301.ns0937s58

    Article  PubMed  Google Scholar 

  24. Corda MG, Orlandi M, Giorgi O (1992) Decrease in GABAA receptor function induced by pentylenetetrazol kindling in the rat: role of N-methyl-D-aspartate (NMDA) receptors. Adv Biochem Psychopharmacol 47:235–247

    CAS  PubMed  Google Scholar 

  25. Löscher W, Rogawski MA (2002) Epilepsy. In: Lodge D, Danysz W, Parsons CG (eds) Ionotropic glutamate receptors as therapeutic targets. FP Graham Publishing Co., Johnson, pp 1–42

    Google Scholar 

  26. Pegorini S, Braida D, Verzoni C et al (2005) Capsaicin exhibits neuroprotective effects in a model of transient global cerebral ischemia in Mongolian gerbils. Br J Pharmacol 144:727–735

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Chung YC, Baek JY, Kim SR et al (2017) Capsaicin prevents degeneration of dopamine neurons by inhibiting glial activation and oxidative stress in the MPTP model of Parkinson's disease. Exp Mol Med 49(3):e298. doi:https://doi.org/10.1038/emm.2016.159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Erdoğan F, Gölgeli A, Arman F et al (2004) The effects of pentylenetetrazole-induced status epilepticus on behavior, emotional memory, and learning in rats. Epilepsy Behav 5(3):388–393

    PubMed  Google Scholar 

  29. Sefil F, Kahraman I, Dokuyucu R et al (2014) Ameliorating effect of quercetin on acute pentylenetetrazole induced seizures in rats. Int J Clin Exp Med 7(9):2471–2477

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Nair V, Turner GA (1984) The thiobarbituric acid test for lipid peroxidation: structure of the adduct with malondialdehyde. Lipids 19:804–805

    CAS  Google Scholar 

  31. Moshage H, Kok B, Huizenga JR et al (1995) Nitrite and nitrate determinations in plasma: a critical evaluation. Clin Chem 41(6 Pt 1):892–896

    CAS  PubMed  Google Scholar 

  32. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77

    CAS  PubMed  Google Scholar 

  33. Haagen L, Brock A (1992) A new automated method for phenotyping arylesterase (EC 3.1.1.2) based upon inhibition of enzymatic hydrolysis of 4-nitrophenyl acetate by phenyl acetate. Eur J Clin Chem Clin Biochem 30(7):391–395

    CAS  PubMed  Google Scholar 

  34. Drury RVA, Walligton EA (1980) Carltons histological techniques, 5th edn. Oxford University Press, New York

    Google Scholar 

  35. Chen CY, Li W, Qu KP et al (2013) Piperine exerts anti-seizure effects via the TRPV1 receptor in mice. Eur J Pharmacol 714(1–3):288–294. doi:https://doi.org/10.1016/j.ejphar.2013.07.041

    Article  CAS  PubMed  Google Scholar 

  36. Vilela LR, Lima IV, Kunsch ÉB et al (2017) Anticonvulsant effect of cannabidiol in the pentylenetetrazole model: pharmacological mechanisms, electroencephalographic profile, and brain cytokine levels. Epilepsy Behav 75:29–35. https://doi.org/10.1016/j.yebeh.2017.07.014

    Article  PubMed  Google Scholar 

  37. Suemaru K, Yoshikawa M, Aso H et al (2018) TRPV1 mediates the anticonvulsant effects of acetaminophen in mice. Epilepsy Res 145:153–159. doi:https://doi.org/10.1016/j.eplepsyres.2018.06.016

    Article  CAS  PubMed  Google Scholar 

  38. Pezzoli M, Elhamdani A, Camacho S et al (2014) Dampened neural activity and abolition of epileptic-like activity in cortical slices by active ingredients of spices. Sci Rep 4:6825. doi:https://doi.org/10.1038/srep06825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gutteridge JMC (1995) Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clinc Chem 41:1819–1828

    CAS  Google Scholar 

  40. Cnubben NH, Rietjens IM, Wortelboer H et al (2001) The interplay of glutathione-related processes in antioxidant defense. Environ Toxicol Pharmacol 10(4):141–152

    CAS  PubMed  Google Scholar 

  41. Akbas SH, Yegin A, Ozben T (2005) Effect of pentylenetetrazol-induced epileptic seizure on the antioxidant enzyme activities, glutathione and lipid peroxidation levels in rat erythrocytes and liver tissues. Clin Biochem 38(11):1009–1014

    CAS  PubMed  Google Scholar 

  42. Shin HJ, Lee JY, Son EY et al (2007) Curcumin attenuates the kainic acid-induced hippocampal cell death in the mice. Neurosci Lett 416:49–54

    CAS  PubMed  Google Scholar 

  43. Hassanzadeh P, Arbabi E, Rostami F (2014) The ameliorative effects of sesamol against seizures, cognitive impairment and oxidative stress in the experimental model of epilepsy. Iran J Basic Med Sci 17:100–107

    PubMed  PubMed Central  Google Scholar 

  44. Demirbilek S, Ersoy MO, Demirbilek S et al (2004) Small-dose capsaicin reduces systemic inflammatory responses in septic rats. Anesth Analg 99(5):1501–1507

    CAS  PubMed  Google Scholar 

  45. Abdel-Salam OME, Abdel-Rahman RF, Sleem AA et al (2012) Modulation of lipopolysaccharide-induced oxidative stress by capsaicin. Inflammopharmacology 20(4):207–217

    CAS  PubMed  Google Scholar 

  46. Lee CY, Kim M, Yoon SW et al (2003) Short-term control of capsaicin on blood and oxidative stress of rats in vivo. Phytother Res 17(5):454–458

    CAS  PubMed  Google Scholar 

  47. Abdel-Salam OME, Sleem AA, Sayed MAEM (2018) Cannabis sativa increases seizure severity and brain lipid peroxidation in pentylenetetrazole-induced kindling in rats. Biomed Pharmacol J 11(3):1187–1197

    CAS  Google Scholar 

  48. Abdel-Salam OME, Sleem AA, Sayed MAEM (2019) Neuroprotective effects of low dose anandamide in pentylenetetrazole-induced kindling in rats. Biomed Pharmacol J 12(1):25–40

    CAS  Google Scholar 

  49. Brown GC (2010) Nitric oxide and neuronal death. Nitric Oxide 23(3):153–165

    CAS  PubMed  Google Scholar 

  50. Forstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33(7):829–837. doi:https://doi.org/10.1093/eurheartj/ehr304. 37a–37d.

    Article  CAS  PubMed  Google Scholar 

  51. Wink DA, Mitchell JB (1998) Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med 25(4–5):434–456

    CAS  PubMed  Google Scholar 

  52. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87(1):315–424

    CAS  PubMed  Google Scholar 

  53. Han D, Yamada K, Senzaki K et al (2000) Involvement of nitric oxide in pentylenetetrazole-induced kindling in rats. J Neurochem 74(2):792–798

    CAS  PubMed  Google Scholar 

  54. La Du BN (1992) Human serum paraoxonase: arylesterase. Pergamon Press, New York

    Google Scholar 

  55. Précourt LP, Amre D, Denis MC et al (2011) The three-gene paraoxonase family: physiologic roles, actions and regulation. Atherosclerosis 214:20–36

    PubMed  Google Scholar 

  56. Mackness M, Mackness B (2013) Targeting paraoxonase-1 in atherosclerosis. Expert Opin Ther Targets 17(7):829–837. doi:https://doi.org/10.1517/14728222.2013.790367

    Article  CAS  PubMed  Google Scholar 

  57. Ferré N, Camps J, Prats E et al (2002) Serum paraoxonase activity: a new additional test for the improved evaluation of chronic liver damage. Clin Chem 48(2):261–268

    PubMed  Google Scholar 

  58. Menini T, Gugliucci A (2014) Paraoxonase 1 in neurological disorders. Redox Rep 19(2):49–58. doi:https://doi.org/10.1179/1351000213Y.0000000071

    Article  CAS  PubMed  Google Scholar 

  59. Nguyen SD, Sok DE (2004) Preferential inhibition of paraoxonase activity of human paraoxonase 1 by negatively charged lipids. J Lipid Res 45(12):2211–2220. doi:https://doi.org/10.1194/jlr.M400144-JLR200

    Article  CAS  PubMed  Google Scholar 

  60. Emoto MC, Yamato M, Sato-Akaba H et al (2015) Brain redox imaging in the pentylenetetrazole (PTZ)-induced kindling model of epilepsy by using in vivo electron paramagnetic resonance and a nitroxide imaging probe. Neurosci Lett 608:40–44. https://doi.org/10.1016/j.neulet.2015.10.008

    Article  CAS  PubMed  Google Scholar 

  61. Pohle W, Becker A, Grecksch G et al (1997) Piracetam prevents pentylenetetrazol kindling-induced neuronal loss and learning deficits. Seizure 6(6):467–474

    CAS  PubMed  Google Scholar 

  62. Saria A. Skofi tsch G, Lembeck F (1982) Distribution of capsaicin in rat tissues after systemic administration. J Pharm Pharmacol 34:273–275

    CAS  PubMed  Google Scholar 

  63. Frey E, Karney-Grobe S, Krolak T, Milbrandt J, DiAntonio A (2018) TRPV1 agonist, capsaicin, induces axon outgrowth after injury via Ca2+/PKA signaling. Eneuro.https://doi.org/10.1523/ENEURO.0095-18.2018

    Article  PubMed  PubMed Central  Google Scholar 

  64. Gibson HE, Edwards JG, Page RS et al (2008) TRPV1 channels mediate long-term depression at synapses on hippocampal interneurons. Neuron 57:746–759

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Dobolyi A, Kékesi KA, Juhász G et al (2014) Neuropeptides in epilepsy. Curr Med Chem 21:1–24

    Google Scholar 

  66. Wang XF, Ge TT, Fan J et al (2017) The role of substance P in epilepsy and seizure disorders. Oncotarget 8(44):78225–78233

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This works is was not supported by research grants

Funding

None. This work was not supported by research grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar M. E. Abdel-Salam.

Ethics declarations

Conflict of interest

The authors declare that there are no potential conflicts of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. The experiments were conducted in accordance with the ethical guidelines for care, use and handling laboratory animals by the Ethics Committee of the NRC and followed the recommendations of the National Institutes of Health Guide for Care and Use of Laboratory Animals (Publication No. 85-23, revised 1985).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised due to an error in Y axis units in Figure 1B and 1C.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Salam, O.M.E., Sleem, A.A., Sayed, M.A.E.B.M. et al. Capsaicin Exerts Anti-convulsant and Neuroprotective Effects in Pentylenetetrazole-Induced Seizures. Neurochem Res 45, 1045–1061 (2020). https://doi.org/10.1007/s11064-020-02979-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-02979-3

Keywords

Navigation