Skip to main content

Advertisement

Log in

Microbially induced calcium carbonate precipitation to design a new type of bio self-healing dental composite

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Crack propagation is one of the issues associating with dental composites which can significantly affect their performance. Current solutions for preventing and stopping the cracks include maximizing the filler to matrix ratio as well as fiber reinforcing of composites which are not always reliable. The precipitation of calcium carbonate (CaCO3) minerals by the generally recognized as safe (GRAS) bacteria can be seen as a novel approach to address this shortcoming. In the present study, the effect of microbially induced calcium carbonate precipitation (MICP) on filling dental composites’ cracks and cavities was studied. In this first step, the capability of different GRAS bacteria to induce CaCO3 precipitation was investigated. In the next step, the capability of potent bacteria to initiate MCIP in solid matrix was evaluated. For this purpose, the CaCO3-bacteria along with necessary nutrients were introduced into different dental composites in two ways, namely, powder and paste form. The light-cured composites were analyzed using optical microscopy, scanning electron microscopy (SEM), and energy-dispersive X-ray (EDS) to identify and characterize the precipitated CaCO3 crystals. It was shown that the incorporation of powder healing compound in two composites resulted in precipitation of CaCO3, while no crystals were formed when a paste form of healing compound was mixed with composites. The results evidently show that MICP can be a feasible alternative to current inefficient approaches to address microcracking issues in dental composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Download references

Funding

The authors received financial supports from Kiwi Innovation Network Ltd. and the Emerging Innovator Programme funders: Norman Barry Foundation, K1 W1 and MBIE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aydin Berenjian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seifan, M., Sarabadani, Z. & Berenjian, A. Microbially induced calcium carbonate precipitation to design a new type of bio self-healing dental composite. Appl Microbiol Biotechnol 104, 2029–2037 (2020). https://doi.org/10.1007/s00253-019-10345-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-10345-9

Keywords

Navigation