Skip to main content
Log in

Novel approaches for efficient  in vivo fermentation production of noncoding RNAs

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Genome-derived noncoding RNAs (ncRNAs), including microRNAs (miRNAs), small interfering RNAs (siRNAs), and long noncoding RNAs (lncRNAs), play an essential role in the control of target gene expression underlying various cellular processes, and dysregulation of ncRNAs is involved in the pathogenesis and progression of various diseases in virtually all species including humans. Understanding ncRNA biology has opened new avenues to develop novel RNA-based therapeutics. Presently, ncRNA research and drug development is dominated by the use of ncRNA mimics that are synthesized chemically in vitro and supplemented with extensive and various types of artificial modifications and thus may not necessarily recapitulate the properties of natural RNAs generated and folded in living cells in vivo. Therefore, there are growing interests in developing novel technologies for in vivo production of RNA molecules. The two most recent major breakthroughs in achieving an efficient, large-scale, and cost-effective fermentation production of recombinant or bioengineered RNAs (e.g., tens of milligrams from 1 L of bacterial culture) are (1) using stable RNA carriers and (2) direct overexpression in RNase III-deficient bacteria, while other approaches offer a low yield (e.g., nano- to microgram scales per liter). In this article, we highlight these novel microbial fermentation-based technologies that have shifted the paradigm to the production of true biological ncRNA molecules for research and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abels ER, Breakefield XO (2016) Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake. Cell Mol Neurobiol 36(3):301–312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alegre F, Ormonde AR, Snider KM, Woolard K, Yu AM, Wittenburg LA (2018) A genetically engineered microRNA-34a prodrug demonstrates anti-tumor activity in a canine model of osteosarcoma. PLoS One 13(12):e0209941

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355

    CAS  PubMed  Google Scholar 

  • Ando T, Suzuki H, Nishimura S, Tanaka T, Hiraishi A, Kikuchi Y (2006) Characterization of extracellular RNAs produced by the marine photosynthetic bacterium Rhodovulum sulfidophilum. J Biochem 139(4):805–811

    CAS  PubMed  Google Scholar 

  • Beckert B, Masquida B (2011) Synthesis of RNA by in vitro transcription. Methods Mol Biol 703:29–41

    CAS  PubMed  Google Scholar 

  • Bramsen JB, Kjems J (2012) Development of therapeutic-grade small interfering RNAs by chemical engineering. Front Genet 3:154

    CAS  PubMed  PubMed Central  Google Scholar 

  • Branch AD, Benenfeld BJ, Robertson HD (1988) Evidence for a single rolling circle in the replication of potato spindle tuber viroid. Proc Natl Acad Sci U S A 85(23):9128–9132

    CAS  PubMed  PubMed Central  Google Scholar 

  • Branch AD, Robertson HD (1984) A replication cycle for viroids and other small infectious RNA's. Science 223(4635):450–455

    CAS  PubMed  Google Scholar 

  • Burley SK, Berman HM, Bhikadiya C, Bi C, Chen L, Di Costanzo L, Christie C, Dalenberg K, Duarte JM, Dutta S, Feng Z, Ghosh S, Goodsell DS, Green RK, Guranovic V, Guzenko D, Hudson BP, Kalro T, Liang Y, Lowe R, Namkoong H, Peisach E, Periskova I, Prlic A, Randle C, Rose A, Rose P, Sala R, Sekharan M, Shao C, Tan L, Tao YP, Valasatava Y, Voigt M, Westbrook J, Woo J, Yang H, Young J, Zhuravleva M, Zardecki C (2019) RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Res 47(D1):D464–D474

    CAS  PubMed  Google Scholar 

  • Burnett JC, Rossi JJ (2012) RNA-based therapeutics: current progress and future prospects. Chem Biol 19(1):60–71

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cech TR, Steitz JA (2014) The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157(1):77–94

    CAS  PubMed  Google Scholar 

  • Chen QX, Wang WP, Zeng S, Urayama S, Yu AM (2015) A general approach to high-yield biosynthesis of chimeric RNAs bearing various types of functional small RNAs for broad applications. Nucleic Acids Res 43(7):3857–3869

    CAS  PubMed  PubMed Central  Google Scholar 

  • D'Souza LM, Larios-Sanz M, Setterquist RA, Willson RC, Fox GE (2003) Small RNA sequences are readily stabilized by inclusion in a carrier rRNA. Biotechnol Prog 19(3):734–738

    CAS  PubMed  Google Scholar 

  • Dahlberg AE (1989) The functional role of ribosomal RNA in protein synthesis. Cell 57(4):525–529

    CAS  PubMed  Google Scholar 

  • Daros JA, Aragones V, Cordero T (2018) A viroid-derived system to produce large amounts of recombinant RNA in Escherichia coli. Sci Rep 8(1):1904

    PubMed  PubMed Central  Google Scholar 

  • Daros JA, Marcos JF, Hernandez C, Flores R (1994) Replication of avocado sunblotch viroid: evidence for a symmetric pathway with two rolling circles and hammerhead ribozyme processing. Proc Natl Acad Sci U S A 91(26):12813–12817

    CAS  PubMed  PubMed Central  Google Scholar 

  • Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun J, Williams BA, Zaleski C, Rozowsky J, Roder M, Kokocinski F, Abdelhamid RF, Alioto T, Antoshechkin I, Baer MT, Bar NS, Batut P, Bell K, Bell I, Chakrabortty S, Chen X, Chrast J, Curado J, Derrien T, Drenkow J, Dumais E, Dumais J, Duttagupta R, Falconnet E, Fastuca M, Fejes-Toth K, Ferreira P, Foissac S, Fullwood MJ, Gao H, Gonzalez D, Gordon A, Gunawardena H, Howald C, Jha S, Johnson R, Kapranov P, King B, Kingswood C, Luo OJ, Park E, Persaud K, Preall JB, Ribeca P, Risk B, Robyr D, Sammeth M, Schaffer L, See LH, Shahab A, Skancke J, Suzuki AM, Takahashi H, Tilgner H, Trout D, Walters N, Wang H, Wrobel J, Yu Y, Ruan X, Hayashizaki Y, Harrow J, Gerstein M, Hubbard T, Reymond A, Antonarakis SE, Hannon G, Giddings MC, Ruan Y, Wold B, Carninci P, Guigo R, Gingeras TR (2012) Landscape of transcription in human cells. Nature 489(7414):101–108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dominska M, Dykxhoorn DM (2010) Breaking down the barriers: siRNA delivery and endosome escape. J Cell Sci 123(Pt 8):1183–1189

    CAS  PubMed  Google Scholar 

  • Duan Z, Yu AM (2016) Bioengineered non-coding RNA agent (BERA) in action. Bioengineered 7(6):411–417

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dupuis-Sandoval F, Poirier M, Scott MS (2015) The emerging landscape of small nucleolar RNAs in cell biology. Wiley Interdiscip Rev RNA 6(4):381–397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner LP, Mookhtiar KA, Coleman JE (1997) Initiation, elongation, and processivity of carboxyl-terminal mutants of T7 RNA polymerase. Biochemistry 36(10):2908–2918

    CAS  PubMed  Google Scholar 

  • Gaudin C, Nonin-Lecomte S, Tisné C, Corvaisier S, Bordeau V, Dardel F, Felden B (2003) The tRNA-like domains of E. coli and A. aeolicus transfer–messenger RNA: structural and functional studies. J Mol Biol 331(2):457–471

    CAS  PubMed  Google Scholar 

  • Guiley KZ, Pratt AJ, MacRae IJ (2012) Single-pot enzymatic synthesis of Dicer-substrate siRNAs. Nucleic Acids Res 40(5):e40

    CAS  PubMed  Google Scholar 

  • Hashiro S, Mitsuhashi M, Chikami Y, Kawaguchi H, Niimi T, Yasueda H (2019a) Construction of Corynebacterium glutamicum cells as containers encapsulating dsRNA overexpressed for agricultural pest control. Appl Microbiol Biotechnol 103(20):8485–8496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hashiro S, Mitsuhashi M, Yasueda H (2019b) Overexpression system for recombinant RNA in Corynebacterium glutamicum using a strong promoter derived from corynephage BFK20. J Biosci Bioeng 128(3):255–263

    CAS  PubMed  Google Scholar 

  • Hessvik NP, Llorente A (2018) Current knowledge on exosome biogenesis and release. Cell Mol Life Sci 75(2):193–208

    CAS  PubMed  Google Scholar 

  • Ho PY, Duan Z, Batra N, Jilek JL, Tu MJ, Qiu JX, Hu Z, Wun T, Lara PN, DeVere White RW, Chen HW, Yu AM (2018) Bioengineered noncoding RNAs selectively change cellular miRNome profiles for cancer therapy. J Pharmacol Exp Ther 365(3):494–506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ho PY, Yu AM (2016) Bioengineering of noncoding RNAs for research agents and therapeutics. Wiley Interdiscip Rev RNA 7(2):186–197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L, Jin J, Deighan P, Kiner E, McReynolds L, Lieberman J (2013) Efficient and specific gene knockdown by small interfering RNAs produced in bacteria. Nat Biotechnol 31(4):350–356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jian C, Tu MJ, Ho PY, Duan Z, Zhang Q, Qiu JX, DeVere White RW, Wun T, Lara PN, Lam KS, Yu AX, Yu AM (2017) Co-targeting of DNA, RNA, and protein molecules provides optimal outcomes for treating osteosarcoma and pulmonary metastasis in spontaneous and experimental metastasis mouse models. Oncotarget 8(19):30742–30755

    PubMed  PubMed Central  Google Scholar 

  • Jilek JL, Tian Y, Yu AM (2017) Effects of MicroRNA-34a on the pharmacokinetics of cytochrome P450 probe drugs in mice. Drug Metab Dispos 45(5):512–522

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jilek JL, Zhang QY, Tu MJ, Ho PY, Duan Z, Qiu JX, Yu AM (2019) Bioengineered let-7c inhibits orthotopic hepatocellular carcinoma and improves overall survival with minimal immunogenicity. Mol Ther Nucleic Acids 14:498–508

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johannes L, Lucchino M (2018) Current challenges in delivery and cytosolic translocation of therapeutic RNAs. Nucleic Acid Ther 28(3):178–193

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104(1–3):5–25

    CAS  PubMed  Google Scholar 

  • Khvorova A, Watts JK (2017) The chemical evolution of oligonucleotide therapies of clinical utility. Nat Biotechnol 35(3):238–248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kikuchi Y, Umekage S (2018) Extracellular nucleic acids of the marine bacterium Rhodovulum sulfidophilum and recombinant RNA production technology using bacteria. FEMS Microbiol Lett 365(3)

  • Kim SK, Park YC (2019) Biosynthesis of omega-hydroxy fatty acids and related chemicals from natural fatty acids by recombinant Escherichia coli. Appl Microbiol Biotechnol 103(1):191–199

    CAS  PubMed  Google Scholar 

  • Kopp F, Mendell JT (2018) Functional classification and experimental dissection of long noncoding RNAs. Cell 172(3):393–407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li MM, Addepalli B, Tu MJ, Chen QX, Wang WP, Limbach PA, LaSalle JM, Zeng S, Huang M, Yu AM (2015) Chimeric microRNA-1291 biosynthesized efficiently in Escherichia coli is effective to reduce target gene expression in human carcinoma cells and improve chemosensitivity. Drug Metab Dispos 43(7):1129–1136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li MM, Wang WP, Wu WJ, Huang M, Yu AM (2014) Rapid production of novel pre-microRNA agent hsa-mir-27b in Escherichia coli using recombinant RNA technology for functional studies in mammalian cells. Drug Metab Dispos 42(11):1791–1795

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li PC, Tu MJ, Ho PY, Jilek JL, Duan Z, Zhang QY, Yu AX, Yu AM (2018) Bioengineered NRF2-siRNA is effective to interfere with NRF2 pathways and improve chemosensitivity of human cancer cells. Drug Metab Dispos 46(1):2–10

    PubMed  PubMed Central  Google Scholar 

  • Liu Y, Stepanov VG, Strych U, Willson RC, Jackson GW, Fox GE (2010) DNAzyme-mediated recovery of small recombinant RNAs from a 5S rRNA-derived chimera expressed in Escherichia coli. BMC Biotechnol 10:85

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu YP, Berkhout B (2011) miRNA cassettes in viral vectors: problems and solutions. Biochim Biophys Acta 1809(11–12):732–745

    CAS  PubMed  Google Scholar 

  • Lundin KE, Hojland T, Hansen BR, Persson R, Bramsen JB, Kjems J, Koch T, Wengel J, Smith CI (2013) Biological activity and biotechnological aspects of locked nucleic acids. Adv Genet 82:47–107

    CAS  PubMed  Google Scholar 

  • Mattick JS (2004) RNA regulation: a new genetics? Nat Rev Genet 5(4):316–323

    CAS  PubMed  Google Scholar 

  • Meinnel T, Mechulam Y, Fayat G (1988) Fast purification of a functional elongator tRNAmet expressed from a synthetic gene in vivo. Nucleic Acids Res 16(16):8095–8096

    CAS  PubMed  PubMed Central  Google Scholar 

  • Milligan J, Groebe D, Witherell G, Uhlenbeck O (1987) Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res 15(21):8783–8798

    CAS  PubMed  PubMed Central  Google Scholar 

  • Min K, Park K, Park DH, Yoo YJ (2015) Overview on the biotechnological production of L-DOPA. Appl Microbiol Biotechnol 99(2):575–584

    CAS  PubMed  Google Scholar 

  • Myers JW, Jones JT, Meyer T, Ferrell JE Jr (2003) Recombinant Dicer efficiently converts large dsRNAs into siRNAs suitable for gene silencing. Nat Biotechnol 21(3):324–328

    CAS  PubMed  Google Scholar 

  • Nagao N, Hirose Y, Misawa N, Ohtsubo Y, Umekage S, Kikuchi Y (2015) Complete genome sequence of Rhodovulum sulfidophilum DSM 2351, an extracellular nucleic acid-producing bacterium. Genome Announc 3(2)

  • Nagao N, Suzuki H, Numano R, Umekage S, Kikuchi Y (2014) Short hairpin RNAs of designed sequences can be extracellularly produced by the marine bacterium Rhodovulum sulfidophilum. J Gen Appl Microbiol 60(6):222–226

    CAS  PubMed  Google Scholar 

  • Nelissen FH, Leunissen EH, van de Laar L, Tessari M, Heus HA, Wijmenga SS (2012) Fast production of homogeneous recombinant RNA—towards large-scale production of RNA. Nucleic Acids Res 40(13):e102

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nohales MA, Flores R, Daros JA (2012a) Viroid RNA redirects host DNA ligase 1 to act as an RNA ligase. Proc Natl Acad Sci U S A 109(34):13805–13810

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nohales MA, Molina-Serrano D, Flores R, Daros JA (2012b) Involvement of the chloroplastic isoform of tRNA ligase in the replication of viroids belonging to the family Avsunviroidae. J Virol 86(15):8269–8276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng Y, Yu G, Tian S, Li H (2014) Co-expression and co-purification of archaeal and eukaryal box C/D RNPs. PLoS One 9(7):e103096

    PubMed  PubMed Central  Google Scholar 

  • Pereira P, Pedro AQ, Queiroz JA, Figueiras AR, Sousa F (2017) New insights for therapeutic recombinant human miRNAs heterologous production: Rhodovolum sulfidophilum vs Escherichia coli. Bioengineered 8(5):670–677

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira P, Pedro AQ, Tomas J, Maia CJ, Queiroz JA, Figueiras A, Sousa F (2016a) Advances in time course extracellular production of human pre-miR-29b from Rhodovulum sulfidophilum. Appl Microbiol Biotechnol 100(8):3723–3734

    CAS  PubMed  Google Scholar 

  • Pereira P, Queiroz JA, Figueiras A, Sousa F (2016b) Affinity approaches in RNAi-based therapeutics purification. J Chromatogr B Analyt Technol Biomed Life Sci 1021:45–56

    CAS  PubMed  Google Scholar 

  • Pereira PA, Tomas JF, Queiroz JA, Figueiras AR, Sousa F (2016c) Recombinant pre-miR-29b for Alzheimer’s disease therapeutics. Sci Rep 6:19946

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petrek H, Batra N, Ho PY, Tu MJ, Yu AM (2019) Bioengineering of a single long noncoding RNA molecule that carries multiple small RNAs. Appl Microbiol Biotechnol 103(15):6107–6117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pitulle C, Hedenstierna KO, Fox GE (1995) A novel approach for monitoring genetically engineered microorganisms by using artificial, stable RNAs. Appl Environ Microbiol 61(10):3661–3666

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pleiss JA, Derrick ML, Uhlenbeck OC (1998) T7 RNA polymerase produces 5′ end heterogeneity during in vitro transcription from certain templates. RNA 4(10):1313–1317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ponchon L, Beauvais G, Nonin-Lecomte S, Dardel F (2009) A generic protocol for the expression and purification of recombinant RNA in Escherichia coli using a tRNA scaffold. Nat Protoc 4(6):947–959

    CAS  PubMed  Google Scholar 

  • Ponchon L, Dardel F (2007) Recombinant RNA technology: the tRNA scaffold. Nat Methods 4(7):571–576

    CAS  PubMed  Google Scholar 

  • Ponchon L, Dardel F (2011) Large scale expression and purification of recombinant RNA in Escherichia coli. Methods 54(2):267–273

    CAS  PubMed  Google Scholar 

  • Qiu W, Park JW, Scholthof HB (2002) Tombusvirus P19-mediated suppression of virus-induced gene silencing is controlled by genetic and dosage features that influence pathogenicity. Mol Plant-Microbe Interact 15(3):269–280

    CAS  PubMed  Google Scholar 

  • Rak R, Dahan O, Pilpel Y (2018) Repertoires of tRNAs: the couplers of genomics and proteomics. Annu Rev Cell Dev Biol 34:239–264

    CAS  PubMed  Google Scholar 

  • Silhavy D, Molnar A, Lucioli A, Szittya G, Hornyik C, Tavazza M, Burgyan J (2002) A viral protein suppresses RNA silencing and binds silencing-generated, 21- to 25-nucleotide double-stranded RNAs. EMBO J 21(12):3070–3080

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki H, Ando T, Umekage S, Tanaka T, Kikuchi Y (2010) Extracellular production of an RNA aptamer by ribonuclease-free marine bacteria harboring engineered plasmids: a proposal for industrial RNA drug production. Appl Environ Microbiol 76(3):786–793

    CAS  PubMed  Google Scholar 

  • Tu MJ, Ho PY, Zhang QY, Jian C, Qiu JX, Kim EJ, Bold RJ, Gonzalez FJ, Bi H, Yu AM (2019) Bioengineered miRNA-1291 prodrug therapy in pancreatic cancer cells and patient-derived xenograft mouse models. Cancer Lett 442:82–90

    CAS  PubMed  Google Scholar 

  • Umeh-Garcia M, Simion C, Ho PY, Batra N, Berg A, Carraway III K, Yu AM, Sweeney C (2019) Suppressing the growth and metastatic potential of triple negative breast cancer cells using novel bioengineered microRNA-127 prodrug. Cancer res:(in press)

  • Usmani SS, Bedi G, Samuel JS, Singh S, Kalra S, Kumar P, Ahuja AA, Sharma M, Gautam A, Raghava GPS (2017) THPdb: database of FDA-approved peptide and protein therapeutics. PLoS One 12(7):e0181748

    PubMed  PubMed Central  Google Scholar 

  • Wang WP, Ho PY, Chen QX, Addepalli B, Limbach PA, Li MM, Wu WJ, Jilek JL, Qiu JX, Zhang HJ, Li T, Wun T, White RD, Lam KS, Yu AM (2015) Bioengineering novel chimeric microRNA-34a for prodrug cancer therapy: high-yield expression and purification, and structural and functional characterization. J Pharmacol Exp Ther 354(2):131–141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wianny F, Zernicka-Goetz M (2000) Specific interference with gene function by double-stranded RNA in early mouse development. Nat Cell Biol 2(2):70–75

    CAS  PubMed  Google Scholar 

  • Willke T (2014) Methionine production—a critical review. Appl Microbiol Biotechnol 98(24):9893–9914

    CAS  PubMed  Google Scholar 

  • Wons E, Furmanek-Blaszk B, Sektas M (2015) RNA editing by T7 RNA polymerase bypasses InDel mutations causing unexpected phenotypic changes. Nucleic Acids Res 43(8):3950–3963

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Sun J, Ho PY, Luo Z, Ma W, Zhao W, Rathod SB, Fernandez CA, Venkataramanan R, Xie W, Yu AM, Li S (2019) Creatine based polymer for codelivery of bioengineered microRNA and chemodrugs against breast cancer lung metastasis. Biomaterials 210:25–40

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang D, Buchholz F, Huang Z, Goga A, Chen CY, Brodsky FM, Bishop JM (2002) Short RNA duplexes produced by hydrolysis with Escherichia coli RNase III mediate effective RNA interference in mammalian cells. Proc Natl Acad Sci U S A 99(15):9942–9947

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu AM, Jian C, Yu AH, Tu MJ (2019) RNA therapy: are we using the right molecules? Pharmacol Ther 196:91–104

    CAS  PubMed  Google Scholar 

  • Zhang QY, Ho PY, Tu MJ, Jilek JL, Chen QX, Zeng S, Yu AM (2018) Lipidation of polyethylenimine-based polyplex increases serum stability of bioengineered RNAi agents and offers more consistent tumoral gene knockdown in vivo. Int J Pharm 547(1–2):537–544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Potty AS, Jackson GW, Stepanov V, Tang A, Liu Y, Kourentzi K, Strych U, Fox GE, Willson RC (2009) Engineered 5S ribosomal RNAs displaying aptamers recognizing vascular endothelial growth factor and malachite green. J Mol Recognit 22(2):154–161

    CAS  PubMed  Google Scholar 

  • Zhao Y, Tu MJ, Wang WP, Qiu JX, Yu AX, Yu AM (2016) Genetically engineered pre-microRNA-34a prodrug suppresses orthotopic osteosarcoma xenograft tumor growth via the induction of apoptosis and cell cycle arrest. Sci Rep 6:26611

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Tu MJ, Yu YF, Wang WP, Chen QX, Qiu JX, Yu AX, Yu AM (2015) Combination therapy with bioengineered miR-34a prodrug and doxorubicin synergistically suppresses osteosarcoma growth. Biochem Pharmacol 98(4):602–613

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by National Cancer Institute (grant No. R01CA225958) and National Institute of General Medical Sciences (R01GM113888), National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-Ming Yu.

Ethics declarations

Ethical statement

The authors confirm that the article does not contain any studies with human participants or animals.

Conflict of interest

The authors are named inventors of patent applications related to RNA bioengineering technology and utilities that are owned by the UC Davis, and Dr. Yu is a founder of AimRNA, Inc. which has an agreement to license the intellectual property.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, AM., Batra, N., Tu, MJ. et al. Novel approaches for efficient  in vivo fermentation production of noncoding RNAs. Appl Microbiol Biotechnol 104, 1927–1937 (2020). https://doi.org/10.1007/s00253-020-10350-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-10350-3

Keywords

Navigation