Skip to main content

Advertisement

Log in

Nanosecond electric pulses rapidly enhance the inactivation of Gram-negative bacteria using Gram-positive antibiotics

  • Methods and protocols
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Physically disrupting microorganism membranes to enable antibiotics to overcome resistance mechanisms that inhibit or excrete antibiotics has great potential for reducing antibiotic doses and rendering resistance mechanisms inert. We demonstrate the synergistic inactivation of a Gram-positive (Staphylococcus aureus) and two Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria by combining 222 30 kV/cm electric pulses (EPs) or 500 20 kV/cm EPs with 300-ns EP duration with various antibiotics with different mechanisms of action is demonstrated. Doses of antibiotics that produced no inactivation in 10 min of exposure in solution with bacteria induced several log reductions under the influence of nanosecond EPs. Combining 2 μg/L or 20 μg/mL of rifampicin with the 30 kV/cm EPs enhanced Staphylococcus aureus inactivation compared with EPs alone, while only a few of the other combinations demonstrated improvement. Combining 2 μg/L or 20 μg/mL of mupirocin or rifampicin with either EP train enhanced E. coli inactivation compared with EPs alone. Combining 2 μg/L or 20 μg/mL of erythromycin or vancomycin with the 30 kV/cm EPs enhanced E. coli inactivation compared with EPs alone. These results indicate that EPs can make Gram-positive antibiotics efficient for inactivating Gram-negative bacteria with future studies required to optimize EP parameters for other antibiotics and Gram-negative bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alifano P, Palumbo C, Pasanisi D, Talà A (2015) Rifampicin-resistance, rpoB polymorphism and RNA polymerase genetic engineering. J Biotechnol 202:60–77

    Article  CAS  Google Scholar 

  • Amiali M, Ngadi MO, Smith JP, Raghavan GSV (2007) Synergistic effect of temperature and pulsed electric field on inactivation of Escherichia coli O157: H7 and Salmonella enteritidis in liquid egg yolk. J Food Eng 79:689–694

    Article  Google Scholar 

  • Aminov R (2017) History of antimicrobial drug discovery: major classes and health impact. Biochem Pharmacol 133:4–19

    Article  CAS  Google Scholar 

  • Birbir M, Hacıoğlu H, Birbir Y, Altuğ G (2009) Inactivation of Escherichia coli by alternative electric current in rivers discharged into sea. J Electrost 67:640–645

    Article  CAS  Google Scholar 

  • Blaser MJ (2014) Missing microbes: how the overuse of antibiotics is fueling our modern plagues. Macmillan

  • Brooun A, Liu S, Lewis K (2000) A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 44:640–646

    Article  CAS  Google Scholar 

  • Coustets M, Ganeva V, Galutzov B, Teissie J (2015) Millisecond duration pulses for flow-through electro-induced protein extraction from E. coli and associated eradication. Bioelectrochemistry 103:82–91

    Article  CAS  Google Scholar 

  • CDC (2013) Antibiotic Resistance Threats in the United States, 2013. https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf. Accessed 15 Jan 2020

  • David MZ, Dryden M, Gottlieb T, Tattevin P, Gould IM (2017) Recently approved antibacterials for methicillin-resistant Staphylococcus aureus (MRSA) and other Gram-positive pathogens: the shock of the new. Int J Antimicrob Agents 50:303–307

    Article  CAS  Google Scholar 

  • Del Pozo JL, Rouse MS, Patel R (2008) Bioelectric effect and bacterial biofilms. A systematic review. Int J Artif Organs 31:786

    Article  Google Scholar 

  • Del Pozo JL, Rouse MS, Mandrekar JN, Sampedro MF, Steckelberg JM, Patel R (2009) Effect of electrical current on the activities of antimicrobial agents against Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother 53:35–40

    Article  Google Scholar 

  • Edelblute CM, Hornef J, Burcus NI, Norman T, Beebe SJ, Schoenbach K, Heller R, Jiang C, Guo S (2017) Controllable moderate heating enhances the therapeutic efficacy of irreversible electroporation for pancreatic cancer. Sci Rep 7:11767

    Article  Google Scholar 

  • Fleming A (1947) Nobel lecture on penicillin. PA Norstedt & Söner

  • Francolini I, Donelli G (2010) Prevention and control of biofilm-based medical-device-related infections. FEMS Immunol Med Microbiol 59:227–238

    Article  CAS  Google Scholar 

  • Garner AL (2019) Pulsed electric field inactivation of microorganisms: from fundamental biophysics to synergistic treatments. Appl Microbiol Biotechnol 103:2917–2929

    Article  Google Scholar 

  • Garner AL, Deminsky M, Neculaes VB, Chashihin V, Knizhnik A, Potapkin B (2013) Cell membrane thermal gradients induced by electromagnetic fields. J Appl Phys 113:214701

    Article  Google Scholar 

  • Garner AL, Caiafa A, Jiang Y, Klopman S, Morton C, Torres AS, Loveless AM, Neculaes VB (2017) Design, characterization and experimental validation of a compact, flexible pulsed power architecture for ex vivo platelet activation. PLoS One 12:e0181214

    Article  Google Scholar 

  • Goldstein BP (2014) Resistance to rifampicin: a review. J Antibiot (Tokyo) 67:625

    Article  CAS  Google Scholar 

  • Hughes S, Heard K, Moore LS (2018) Antimicrobial therapies for Gram-positive infections. Lung Cancer 15:05

    Google Scholar 

  • Kåhrström CT (2013). Entering a post-antibiotic era? Nat Rev Microbiol 11:146

    PubMed  Google Scholar 

  • Khan SI, Blumrosen G, Vecchio D, Golberg A, McCormack MC, Yarmush ML, Hamblin MR, Austen WG Jr (2016) Eradication of multidrug-resistant pseudomonas biofilm with pulsed electric fields. Biotechnol Bioeng 113:643–650

    Article  CAS  Google Scholar 

  • Kolb JF, Kono S, Schoenbach KH (2006) Nanosecond pulsed electric field generators for the study of subcellular effects. Bioelectromagnetics 27:172–187

    Article  Google Scholar 

  • Kostyanev T, Can F (2017) The global crisis of antimicrobial resistance. Antimicrob Steward 2:1

    Google Scholar 

  • Kvam E, Davis B, Mondello F, Garner AL (2012) Nonthermal atmospheric plasma rapidly disinfects multidrug-resistant microbes by inducing cell surface damage. Antimicrob Agents Chemother 56:2028–2036

    Article  CAS  Google Scholar 

  • Mohammad H, AbdelKhalek A, Abutaleb NS, Seleem MN (2018) Repurposing niclosamide for intestinal decolonization of vancomycin-resistant enterococci. Int J Antimicrob Agents 51:897–904

    Article  CAS  Google Scholar 

  • Moody A, Marx G, Swanson BG, Bermúdez-Aguirre D (2014) A comprehensive study on the inactivation of Escherichia coli under nonthermal technologies: high hydrostatic pressure, pulsed electric fields and ultrasound. Food Control 37:305–314

    Article  CAS  Google Scholar 

  • Novickij V, Švedienė J, Paškevičius A, Markovskaja S, Lastauskienė E, Zinkevičienė A, Girkontaitė I, Novickij J (2018a) Induction of different sensitization patterns of MRSA to antibiotics using electroporation. Molecules 23:1799

    Article  Google Scholar 

  • Novickij V, Zinkevičienė A, Stanevičienė R, Gruškienė R, Servienė E, Vepštaitė-Monstavičė I, Krivorotova T, Lastauskienė E, Sereikaitė J, Girkontaitė I (2018b) Inactivation of Escherichia coli using nanosecond electric fields and nisin nanoparticles: a kinetics study. Front Microbiol 9:3006

    Article  Google Scholar 

  • Perni S, Chalise PR, Shama G, Kong MG (2007) Bacterial cells exposed to nanosecond pulsed electric fields show lethal and sublethal effects. Int J Food Microbiol 120:311–314

    Article  CAS  Google Scholar 

  • Ravensdale J, Wong Z, O’Brien F, Gregg K (2016) Efficacy of antibacterial peptides against peptide-resistant MRSA is restored by permeabilization of bacteria membranes. Front Microbiol 7:1745

    Article  Google Scholar 

  • Rubin AE, Usta OB, Schloss R, Yarmush M, Golberg A (2019) Selective inactivation of Pseudomonas aeruginosa and Staphylococcus epidermidis with pulsed electric fields and antibiotics. Adv Wound Care 8:136–148. https://doi.org/10.1089/wound.2018.0819

    Article  Google Scholar 

  • Schoenbach KH, Peterkin FE, Alden RW III, Beebe SJ (1997) The effect of pulsed electric fields on biological cells: experiments and applications. IEEE Trans Plasma Sci 25:284–292

    Article  Google Scholar 

  • Schoenbach KH, Joshi RP, Beebe SJ, Baum CE (2009) A scaling law for membrane permeabilization with nanopulses. IEEE Trans Dielectr Electr Insul 16:1224–1235

    Article  Google Scholar 

  • Song J, Joshi RP, Schoenbach KH (2011) Synergistic effects of local temperature enhancements on cellular responses in the context of high-intensity, ultrashort electric pulses. Med Biol Eng Comput 49:713–718. https://doi.org/10.1007/s11517-011-0745-z

    Article  CAS  PubMed  Google Scholar 

  • Song J, Garner AL, Joshi RP (2017) Effect of thermal gradients created by electromagnetic fields on cell-membrane electroporation probed by molecular-dynamics simulations. Phys Rev Appl 7:024003. https://doi.org/10.1103/PhysRevApplied.7.024003

    Article  Google Scholar 

  • Teissie J, Rols MP (1993) An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization. Biophys J 65:409–413

    Article  Google Scholar 

  • Thangamani S, Mohammad H, Abushahba MF, Sobreira TJ, Seleem MN (2016) Repurposing auranofin for the treatment of cutaneous staphylococcal infections. Int J Antimicrob Agents 47:195–201

    Article  CAS  Google Scholar 

  • Timmermans RA, Groot MN, Nederhoff AL, Van Boekel MA, Matser AM, Mastwijk HC (2014) Pulsed electric field processing of different fruit juices: impact of pH and temperature on inactivation of spoilage and pathogenic micro-organisms. Int J Food Microbiol 173:105–111

    Article  CAS  Google Scholar 

  • Vadlamani A, Detwiler DA, Dhanabal A, Garner AL (2018) Synergistic bacterial inactivation by combining antibiotics with nanosecond electric pulses. Appl Microbiol Biotechnol 102:7589–7596

    Article  CAS  Google Scholar 

  • Walkling-Ribeiro M, Rodríguez-González O, Jayaram SH, Griffiths MW (2011) Processing temperature, alcohol and carbonation levels and their impact on pulsed electric fields (PEF) mitigation of selected characteristic microorganisms in beer. Food Res Int 44:2524–2533

    Article  CAS  Google Scholar 

  • Weaver JC, Chizmadzhev YA (1996) Theory of electroporation: a review. Bioelectrochem Bioenerg 41:135–160

    Article  CAS  Google Scholar 

  • WHO (2017) The selection and use of essential medicines: report of the WHO expert committee, 2017 (including the 20th WHO model list of essential medicines and the 6th model list of essential medicines for children). World Health Organization, Geneva

    Google Scholar 

  • Witte W (1998) Medical consequences of antibiotic use in agriculture. Science 279:996–997

    Article  CAS  Google Scholar 

  • Zhang Q, Qin B-L, Barbosa-Canovas GV, Swanson BG (1995) Inactivation of E. coli for food pasteurization by high-strength pulsed electric fields. J Food Process Preserv 19:103–118

    Article  Google Scholar 

Download references

Acknowledgments

We thank Alan Kraft for his assistance with performing temperature measurements across the cuvettes during electric pulse applications.

Funding

This work was funded by a Purdue Research Foundation Doctoral Fellowship. We thank Nanovis, LLC, for providing materials.

Author information

Authors and Affiliations

Authors

Contributions

R. A.V., D. A. D., A. D., J. M., M. N. S., and A. L. G designed research; R. A. V., D. A. D, A. D., and R. P. performed research; R. A. V., D. A. D, A. D., and A. L. G. analyzed data; and R. A. V., A. D., D. A. D., and A. L. G. wrote the paper.

Corresponding author

Correspondence to Allen L. Garner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vadlamani, R.A., Dhanabal, A., Detwiler, D.A. et al. Nanosecond electric pulses rapidly enhance the inactivation of Gram-negative bacteria using Gram-positive antibiotics. Appl Microbiol Biotechnol 104, 2217–2227 (2020). https://doi.org/10.1007/s00253-020-10365-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-10365-w

Keywords

Navigation