Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cancer gene therapy by NF-κB-activated cancer cell-specific expression of CRISPR/Cas9 targeting telomeres

Subjects

Abstract

The transcription factor NF-κB is an attractive target for cancer therapy due to its over-activation in all tumours; however, NF-κB inhibitors developed in the past decades rarely became drugs due to undesirable side effects. In this study, we developed a gene therapy strategy named NF-κB-activated gene expression (Nage), which could induce the death of cancer cells in vitro and in vivo by utilising NF-κB over-activity in cancer cells, but had no effects on normal cells. Nage was consisted of an NF-κB-specific promoter formed by fusing an NF-κB decoy sequence with a minimal promoter, which could be bound by the intracellular over-activated NF-κB and thus activated the expression of downstream effector genes in an NF-κB-specific manner. In this study, we first confirmed the cancer cell-specific over-activation of NF-κB and then tested the cancer cell specificity of the Nage vector by expressing the reporter gene ZsGreen in various in vitro cultivated cells. We next demonstrated that the Nage vector could be used to express CRISPR/Cas9 protein only in cancer cells. The Cas9 protein was then guided by a sgRNA targeting telomeric DNA and induced cancer cell death. The Nage vector expressing Cas9/sgRNA could be packaged into adeno-associated virus (AAV) and intravenously injected to inhibit tumour growth in mice without visible side effects and toxicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Relative NF-κB RelA protein abundance (i.e. NF-κB activity) in various cell lines.
Fig. 2: Expression of ZsGreen with the Nage vector in various cell lines.
Fig. 3: Expression of Cas9-TsgRNA with the Nage vector in various cell lines.
Fig. 4: Quantitative telomere length measurement with qPCR.
Fig. 5: Evaluation of rAAV.
Fig. 6: Gene therapy of xenografted cancers in mice with the recombinant AAV packaged with the Nage vector expressing Cas9 and TsgRNA (rAAV-TsgRNA-DMP-Cas9).

Similar content being viewed by others

References

  1. Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell. 1986;46:705–16.

    CAS  PubMed  Google Scholar 

  2. Oeckinghaus A, Hayden MS, Ghosh S. Crosstalk in NF-κB signaling pathways. Nat Immunol. 2011;12:695–708.

    CAS  PubMed  Google Scholar 

  3. Hatada EN, Krappmann D, Scheidereit C. NF-κB and the innate immune response. Curr Opin Immunol. 2000;12:52–8.

    CAS  PubMed  Google Scholar 

  4. Hayden MS, West AP, Ghosh S. NF-κB and the immune response. Oncogene. 2006;25:6758–80.

    CAS  PubMed  Google Scholar 

  5. Oeckinghaus A, Ghosh S. The NF-κB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol. 2009;1:a000034.

    PubMed  PubMed Central  Google Scholar 

  6. Wan F, Lenardo MJ. Specification of DNA binding activity of NF-κB proteins. Cold Spring Harb Perspect Biol. 2009;1:a000067.

    PubMed  PubMed Central  Google Scholar 

  7. Smale ST. Hierarchies of NF-κB target-gene regulation. Nat Immunol. 2011;12:689–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Pahl HL. Activators and target genes of Rel/NF-κB transcription factors. Oncogene. 1999;18:6853–66.

    CAS  PubMed  Google Scholar 

  9. Ahn KS, Aggarwal BB. Transcription factor NF-κB—A sensor for smoke and stress signals. Nat Prod Mol Ther. 2005;1056:218–33.

    CAS  Google Scholar 

  10. Karin M. NF-κB as a critical link between inflammation and cancer. Cold Spring Harb Perspect Biol. 2009;1:a000141.

    PubMed  PubMed Central  Google Scholar 

  11. Ben-Neriah Y, Karin M. Inflammation meets cancer, with NF-κB as the matchmaker. Nat Immunol. 2011;12:715–23.

    CAS  PubMed  Google Scholar 

  12. DiDonato JA, Mercurio F, Karin M. NF-κB and the link between inflammation and cancer. Immunol Rev. 2012;246:379–400.

    PubMed  Google Scholar 

  13. Hoesel B, Schmid JA. The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer. 2013;12:86.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Basseres DS, Baldwin AS. Nuclear factor-κB and inhibitor of kappa B kinase pathways in oncogenic initiation and progression. Oncogene. 2006;25:6817–30.

    CAS  PubMed  Google Scholar 

  15. Barkett M, Gilmore TD. Control of apoptosis by Rel/NF-κB transcription factors. Oncogene. 1999;18:6910–24.

    CAS  PubMed  Google Scholar 

  16. Biswas DK, Cruz AP, Gansberger E, Pardee AB. Epidermal growth factor-induced nuclear factor κB activation: a major pathway of cell-cycle progression in estrogen-receptor negative breast cancer cells. Proc Natl Acad Sci USA. 2000;97:8542–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sen R. Control of B lymphocyte apoptosis by the transcription factor NF-κB. Immunity. 2006;25:871–83.

    CAS  PubMed  Google Scholar 

  18. Ainbinder E, Revach M, Wolstein O, Moshonov S, Diamant N, Dikstein R. Mechanism of rapid transcriptional induction of tumor necrosis factor alpha-responsive genes by NF-κB. Mol Cell Biol. 2002;22:6354–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lane DP, Midgley CA, Hupp TR, Lu X, Vojtesek B, Picksley SM. On the regulation of the p53 tumour suppressor, and its role in the cellular response to DNA damage. Philos Trans R Soc Lond B Biol Sci. 1995;347:83–7.

    CAS  PubMed  Google Scholar 

  20. Su S, Chen J, Yao H, Liu J, Yu S, Lao L, et al. CD10+GPR77+ cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell. 2018;172:841–56.e16.

    CAS  PubMed  Google Scholar 

  21. Nguyen DP, Li JY, Yadav SS, Tewari AK. Recent insights into NF-κB signalling pathways and the link between inflammation and prostate cancer. BJU Int. 2014;114:168–76.

    CAS  PubMed  Google Scholar 

  22. Grinberg-Bleyer Y, Ghosh S. A novel link between inflammation and cancer. Cancer Cell. 2016;30:829–30.

    CAS  PubMed  Google Scholar 

  23. Karin M, Bonnizi G, Cao Y, Delhase M, Greten F, Hu YL, et al. NF-κB: a factor that provides a link between stress, inflammation and cancer. Eur J Cancer. 2002;38:S116.

    Google Scholar 

  24. Karin M, Yamamoto Y, Wang QM. The IKK NF-κB system: a treasure trove for drug development. Nat Rev Drug Discov. 2004;3:17–26.

    CAS  PubMed  Google Scholar 

  25. Gupta SC, Sundaram C, Reuter S, Aggarwal BB. Inhibiting NF-κB activation by small molecules as a therapeutic strategy. Biochim Biophys Acta. 2010;1799:775–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Pikarsky E, Ben-Neriah Y. NF-κB inhibition: a double-edged sword in cancer? Eur J Cancer. 2006;42:779–84.

    CAS  PubMed  Google Scholar 

  27. Xiao G, Rabson AB, Young W, Qing G, Qu Z. Alternative pathways of NF-κB activation: a double-edged sword in health and disease. Cytokine Growth Factor Rev. 2006;17:281–93.

    CAS  PubMed  Google Scholar 

  28. Tornatore L, Sandomenico A, Raimondo D, Low C, Rocci A, Tralau-Stewart C, et al. Cancer-selective targeting of the NF-κB survival pathway with GADD45β/MKK7 inhibitors. Cancer Cell. 2014;26:938.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rega C, Russo R, Foca A, Sandomenico A, Iaccarino E, Raimondo D, et al. Probing the interaction interface of the GADD45beta/MKK7 and MKK7/DTP3 complexes by chemical cross-linking mass spectrometry. Int J Biol Macromol. 2018;114:114–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang D, Tang H, Xu X, Dai W, Wu J, Wang J. Control the intracellular NF-κB activity by a sensor consisting of miRNA and decoy. Int J Biochem Cell Biol. 2018;95:43–52.

    CAS  PubMed  Google Scholar 

  31. Wang JK, Li TX, Bai YF, Lu ZH. Evaluating the binding affinities of NF-κB p50 homodimer to the wild-type and single-nucleotide mutant Ig-κB sites by the unimolecular dsDNA microarray. Anal Biochem. 2003;316:192–201.

    CAS  PubMed  Google Scholar 

  32. Zhou F, Xing Y, Xu X, Yang Y, Zhang J, Ma Z, et al. NBPF is a potential DNA-binding transcription factor that is directly regulated by NF-κB. Int J Biochem Cell Biol. 2013;45:2479–90.

    CAS  PubMed  Google Scholar 

  33. Gu G, Wang T, Yang Y, Xu X, Wang J. An improved SELEX-Seq strategy for characterizing DNA-binding specificity of transcription factor: NF-κB as an example. PLoS ONE. 2013;8:e76109.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Xing Y, Zhou F, Wang J. Subset of genes targeted by transcription factor NF-κB in TNFα-stimulated human HeLa cells. Funct Integr Genom. 2013;13:143–54.

    CAS  Google Scholar 

  35. Zhou F, Wang W, Xing YJ, Wang TT, Xu XH, Wang JK. NF-κB target microRNAs and their target genes in TNFα-stimulated HeLa Cells. Biochim Biophys Acta. 2014;1839:344–54.

    CAS  PubMed  Google Scholar 

  36. Zhou F, Xu X, Wang D, Wu J, Wang J. Identification of novel NF-κB transcriptional targets in TNFα-treated HeLa and HepG2 cells. Cell Biol Int. 2017;41:555–69.

    CAS  PubMed  Google Scholar 

  37. Dai W, Wu J, Zhang S, Shi B, Xu X, Wang D, et al. Genes directly regulated by NF-κB in human hepatocellular carcinoma HepG2. Int J Biochem Cell Biol. 2017;89:157–70.

    CAS  PubMed  Google Scholar 

  38. Wang D, Dai W, Wu J, Wang J. Improving transcriptional activity of human cytomegalovirus major immediate-early promoter by mutating NF-κB binding sites. Protein Expr Purif. 2018;142:16–24.

    CAS  PubMed  Google Scholar 

  39. Cawthon RM. Telomere measurement by quantitative PCR. Nucleic Acids Res. 2002;30:e47.

    PubMed  PubMed Central  Google Scholar 

  40. Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li GW, et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell. 2013;155:1479–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Blackburn EH. Structure and function of telomeres. Nature. 1991;350:569–73.

    CAS  PubMed  Google Scholar 

  42. Moon IK, Jarstfer MB. The human telomere and its relationship to human disease, therapy, and tissue engineering. Front Biosci. 2007;12:4595–620.

    CAS  PubMed  Google Scholar 

  43. Cairney CJ, Keith WN. Telomerase redefined: integrated regulation of hTR and hTERT for telomere maintenance and telomerase activity. Biochimie. 2008;90:13–23.

    CAS  PubMed  Google Scholar 

  44. Zhao Y, Sfeir AJ, Zou Y, Buseman CM, Chow TT, Shay JW, et al. Telomere extension occurs at most chromosome ends and is uncoupled from fill-in in human cancer cells. Cell. 2009;138:463–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Blackburn EH, Greider CW, Szostak JW. Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat Med. 2006;12:1133–8.

    CAS  PubMed  Google Scholar 

  46. Chen W. Accelerating cancer evolution: a dark side of SIRT1 in genome maintenance. Oncotarget. 2012;3:363–4.

    PubMed  PubMed Central  Google Scholar 

  47. Counter CM, Botelho FM, Wang P, Harley CB, Bacchetti S. Stabilization of short telomeres and telomerase activity accompany immortalization of Epstein-Barr virus-transformed human B lymphocytes. J Virol. 1994;68:3410–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Aschacher T, Wolf B, Enzmann F, Kienzl P, Messner B, Sampl S, et al. LINE-1 induces hTERT and ensures telomere maintenance in tumour cell lines. Oncogene. 2016;35:94–104.

    CAS  PubMed  Google Scholar 

  49. Deng Y, Chang S. Role of telomeres and telomerase in genomic instability, senescence and cancer. Lab Investig. 2007;87:1071–6.

    CAS  PubMed  Google Scholar 

  50. Wright WE, Piatyszek MA, Rainey WE, Byrd W, Shay JW. Telomerase activity in human germline and embryonic tissues and cells. Dev Genet. 1996;18:173–9.

    CAS  PubMed  Google Scholar 

  51. Shay JW, Wright WE. Role of telomeres and telomerase in cancer. Semin Cancer Biol. 2011;21:349–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Huang FW, Hodis E, Xu MJ, Kryukov GV, Chin L, Garraway LA. Highly recurrent TERT promoter mutations in human melanoma. Science. 2013;339:957–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Jafri MA, Ansari SA, Alqahtani MH, Shay JW. Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome Med. 2016;8:69.

    PubMed  PubMed Central  Google Scholar 

  54. Mosoyan G, Kraus T, Ye F, Eng K, Crispino JD, Hoffman R, et al. Imetelstat, a telomerase inhibitor, differentially affects normal and malignant megakaryopoiesis. Leukemia. 2017;31:2458–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Tefferi A, Lasho TL, Begna KH, Patnaik MM, Zblewski DL, Finke CM, et al. A pilot study of the telomerase inhibitor imetelstat for myelofibrosis. N Engl J Med. 2015;373:908–19.

    CAS  PubMed  Google Scholar 

  56. Zeng X, Hernandez-Sanchez W, Xu M, Whited TL, Baus D, Zhang J, et al. Administration of a nucleoside analog promotes cancer cell death in a telomerase-dependent manner. Cell Rep. 2018;23:3031–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science. 2010;327:167–70.

    CAS  PubMed  Google Scholar 

  58. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 2011;471:602–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346:1258096.

    PubMed  Google Scholar 

  60. Samanta MK, Dey A, Gayen S. CRISPR/Cas9: an advanced tool for editing plant genomes. Transgenic Res. 2016;25:561–73.

    CAS  PubMed  Google Scholar 

  61. Hermonat PL, Muzyczka N. Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells. Proc Natl Acad Sci USA. 1984;81:6466–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. George LA. Hemophilia gene therapy comes of age. Blood Adv. 2017;1:2591–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW, et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med. 2017;377:1713–22.

    CAS  PubMed  Google Scholar 

  64. Valdmanis PN, Kay MA. Future of rAAV gene therapy: platform for RNAi, gene editing, and beyond. Hum Gene Ther. 2017;28:361–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Shen S, Sanchez ME, Blomenkamp K, Corcoran EM, Marco E, Yudkoff CJ, et al. Amelioration of Alpha-1 antitrypsin deficiency diseases with genome editing in transgenic mice. Hum Gene Ther. 2018;29:861–73.

    CAS  PubMed  Google Scholar 

  66. Graham FL, Smiley J, Russell WC, Nairn R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol. 1977;36:59–74.

    CAS  PubMed  Google Scholar 

  67. Louis N, Evelegh C, Graham FL. Cloning and sequencing of the cellular-viral junctions from the human adenovirus type 5 transformed 293 cell line. Virology. 1997;233:423–9.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (61971122) and the National Key Research and Development Programme of China (2017YFA0205502).

Author information

Authors and Affiliations

Authors

Contributions

JKW conceived the study and designed experiments. WD designed and performed main experiments. JW and DYW prepared reagents and performed partial experiments. JKW and WD wrote the paper with support from all authors.

Corresponding author

Correspondence to Jinke Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, W., Wu, J., Wang, D. et al. Cancer gene therapy by NF-κB-activated cancer cell-specific expression of CRISPR/Cas9 targeting telomeres. Gene Ther 27, 266–280 (2020). https://doi.org/10.1038/s41434-020-0128-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-020-0128-x

This article is cited by

Search

Quick links