Skip to main content

Advertisement

Log in

A 99.79% energy saving switching scheme without third reference level and reset energy for SAR ADC

  • Mixed Signal Letter
  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

An energy-efficient capacitor switching scheme is proposed for successive approximation register analog-to-digital converter. During the design process, the semi-resting DAC structure and charge characteristic of floating capacitor ensure significant energy saving. There is no switching power consumption in the first two comparison process. Compared with the conventional switching scheme, the proposed method decreases 99.79% switching energy and 73.8% capacitor area. Benefit from merge-and-split method, only two reference levels are utilized in this novel scheme, where the power and accuracy of generating the third reference voltage are not necessary to consider. Besides, the reset energy of the proposed scheme is verified to be 0. Furthermore, the common mode voltage at comparator inputs is kept at 0.5Vref except merely a 0.5LSB reduction due to LSB-down technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Lee, P., Kao, C., & Hsieh, C. (2016). A 0.4 V 1.94fJ/conversion-step 10b 750kS/s SAR ADC with input-range-adaptive switching. In 2016 IEEE international symposium on circuits and systems (ISCAS), (pp. 1042–1045).

  2. Ginsburg, B. P., & Chandrakasan, A. P. (2005).An energy-efficient charge recycling approach for a SAR converter with capacitive DAC. In 2005 IEEE international symposium on circuits and systems (Vol. 181, pp. 184–187).

  3. Liu, C., Chang, S., Huang, G., & Lin, Y. (2010). A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure. IEEE Journal of Solid-State Circuits,45(4), 731–740.

    Article  Google Scholar 

  4. Cheng, Y., & Tang, K. (2015).A 0.5-V 1.28-MS/s 10-bit SAR ADC with switching detect logic. In 2015 IEEE international symposium on circuits and systems (ISCAS), (pp. 293–296).

  5. Baek, S.-U., Lee, K.-Y., & Lee, M. (2018). Energy-efficient switching scheme for SAR ADC using zero-energy dual capacitor switching. Analog Integrated Circuits and Signal Processing,94(2), 317–322.

    Article  MathSciNet  Google Scholar 

  6. Osipov, D., & Paul, S. (2016). Two advanced energy-back SAR ADC architectures with 99.21 and 99.37% reduction in switching energy. Analog Integrated Circuits and Signal Processing,87(1), 81–91.

    Article  Google Scholar 

  7. Ghanavati, B., Abiri, E., Salehi, M. R., Keyhani, A., & Sanyal, A. (2017). LSB split capacitor SAR ADC with 99.2% switching energy reduction. Analog Integrated Circuits and Signal Processing,93(2), 375–382.

    Article  Google Scholar 

  8. Wu, A., Wu, J., & Huang, J. (2017). Energy-efficient switching scheme for ultra-low voltage SAR ADC. Analog Integrated Circuits and Signal Processing,90(2), 507–511.

    Article  Google Scholar 

  9. Liu, S., Han, H., Ding, R., & Zhu, Z. (2018). Energy-efficient switching scheme for SAR ADC with only two reference voltages. Analog Integrated Circuits and Signal Processing,97(3), 603–613.

    Article  Google Scholar 

  10. Lin, J., & Hsieh, C. (2015). A 0.3 V 10-bit 1.17 f SAR ADC with merge and split switching in 90 nm CMOS. IEEE Transactions on Circuits and Systems I: Regular Papers,62(1), 70–79.

    Article  Google Scholar 

  11. Kuo, C. H., & Hsieh, C. E. (2011). Floating capacitor switching SAR ADC. Electronics Letters,47(13), 742–743.

    Article  Google Scholar 

  12. Hsieh, S., & Hsieh, C. (2018). A 0.44-fJ/conversion-step 11-bit 600-kS/s SAR ADC with semi-resting DAC. IEEE Journal of Solid-State Circuits,53(9), 2595–2603.

    Article  Google Scholar 

  13. Sun, L., Li, B., Wong, A. K. Y., Ng, W. T., & Pun, K. P. (2015). A charge recycling SAR ADC with a LSB-down switching scheme. IEEE Transactions on Circuits and Systems I: Regular Papers,62(2), 356–365.

    Article  Google Scholar 

  14. Ding, R., Sun, D., Liu, S., Liang, H., & Zhu, Z. (2018). Energy-efficient switching scheme based on floating technique for SAR ADC. Analog Integrated Circuits and Signal Processing,97(1), 115–122.

    Article  Google Scholar 

  15. Zhu, Y., Chan, C., Chio, U., Sin, S., U, S., Martins, R. P., et al. (2010). A 10-bit 100-MS/s reference-free SAR ADC in 90 nm CMOS. IEEE Journal of Solid-State Circuits,45(6), 1111–1121.

    Article  Google Scholar 

  16. Rahimi, E., & Yavari, M. (2014). Energy-efficient high-accuracy switching method for SAR ADCs. Electronics Letters,50(7), 499–501.

    Article  Google Scholar 

  17. Yuan, C., & Lam, Y. (2012). Low-energy and area-efficient tri-level switching scheme for SAR ADC. Electronics Letters,48(9), 482–483.

    Article  Google Scholar 

  18. Sanyal, A., & Sun, N. (2013). SAR ADC architecture with 98% reduction in switching energy over conventional scheme. Electronics Letters,49(4), 248–250.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61871118), the Fundamental Research Funds for the Central Universities (No. 2242019k30037) and the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP) (No. PPZY2015B136).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhui Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Wu, J. A 99.79% energy saving switching scheme without third reference level and reset energy for SAR ADC. Analog Integr Circ Sig Process 102, 667–673 (2020). https://doi.org/10.1007/s10470-020-01594-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-020-01594-0

Keywords

Navigation