Skip to main content
Log in

Preparation of modified Chinese medical stone and its performance on the removal of low-concentration ammonium from water

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The ammonium ion occurrence in excess consequences in the adverse effects on the ecosystem, and human health. The experiment was conducted using the Chinese medical stone to remove ammonium ion from the water. The Chinese medical stone was modified by citric acid monohydrate and designed to identify the ammonium ion uptake capacity by the MMS and focused on evaluating the adsorption and kinetics isotherm, modifier’s concentration, contact time and initial concentration effects on MMS performance. The modification process was well-appointed by mixing and shaking at 180 rpm; at 60 °C; for eighth, at mixing ratio 1:20 of the UMMS with 0.2 mol concentration of citric acid monohydrate solution. The optimum adsorption performance was determined using Beaker sequence batch test method. The SEM micrographs; BET and FTIR of UMMS and MMS tests have undertaken and evaluated. The result showed that the maximum adsorption amount of MMS to ammonium ions was 5.38 mg/g at 50 mg/L ammonium ion concentration by the experiment, and the qe max was 3.5 mg/g from Langmuir equation. The ammonium adsorption by the MMS had fitted for both the Langmuir isotherm and the Freundlich isotherm models and also adapted to the kinetic parameter pseudo-second-order model shows a superior expectation of the sorption kinetics.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

MMS:

Modified medical stone

UMMS:

Unmodified medical stone

CAMH:

Citric acid monohydrate

MS:

The Chinese medical stone

Q e :

The equilibrium uptake for ammonium

C 0 :

The initial concentration (mg/L)

V :

Volume (mL)

C e :

The final concentration of adsorbate in the equilibrium solution (mg/L)

q m :

The maximum adsorption capacity of the adsorbent (mg/g)

k :

The adsorption energy coefficient (L/mg)

RL:

Regarding dimensionless equilibrium

K :

The Langmuir constant (L/mg)

kF and n :

Freundlich constants (L/mg)

qe and qt :

The adsorption capacity at equilibrium at the time (mg/g)

K 1 :

The rate constant of the pseudo-first-order model (min−1)

q t :

The amount of adsorbent adsorbed at contact time t (h) (mg/g)

K 2 :

The pseudo-second-order rate constant [g (mg/h)]

FTIR:

Fourier transform IR

BET:

Brunauer–Emmett–Teller (BET)

References

  1. Y.F. Wang, F. Lin, W.Q. Pang, J. Hazard. Mater. 142, 1 (2007)

    Article  Google Scholar 

  2. J. Huang, N.R. Kankanamge, C. Chow, D.T. Welsh, T. Li, P.R. Teasdale, J. Environ. Sci. 63(63), 174 (2018)

    Article  Google Scholar 

  3. G.J. Millar, A. Winnett, T. Thompson, S.J. Couperthwaite, J. Chem. Eng. Process 9, 6 (2016)

    Google Scholar 

  4. F. Mazloomi, M. Jalali, J. Environ. Chem. Eng. 4, 2 (2016)

    Article  Google Scholar 

  5. Y. Angar, N.E. Djelali, S. Kebbouche-Gana, Environ. Sci. Pollut. Res. Int. 24, 12 (2017)

    Article  Google Scholar 

  6. M. Vocciante, A. De Folly D’Auris, A. Finocchi, M. Tagliabue, M. Bellettato, A. Ferrucci, A.P. Reverberi, S. Ferro, J. Clean. Prod. 198, 1 (2018)

    Article  Google Scholar 

  7. A. Alshameri, A. Ibrahim, A.M. Assabri, X. Lei, H. Wang, C. Yan, Powder Technol. 258, 24 (2014)

    Article  Google Scholar 

  8. M.K. Awasthi, Q. Wang, S.K. Awasthi, M. Wang, H. Chen, X. Ren, J. Zhao, Z. Zhang, Bioresour. Technol. 247, 1 (2018)

    Article  Google Scholar 

  9. K. Pletsch, F. Raab, Jungbunzlauer Suisse AG. 028, (2018)

  10. G.M. Gadd, in Advances in Microbial Physiology, ed. by R.K. Poole (Academic Press, Cambridge, 1999), p. 47

    Google Scholar 

  11. A.P.H. Association, in Biological Safety (American Public Health Association, American Water Works Association, Water Environment Federation, USA, 1999)

  12. H. Zheng, L. Han, H. Ma, Y. Zheng, H. Zhang, D. Liu, S. Liang, J. Hazard. Mater. 158, 2 (2008)

    Article  Google Scholar 

  13. P. Maneechakr, S. Karnjanakom, Res. Chem. Intermed. 45, 4583 (2019)

    Article  CAS  Google Scholar 

  14. J. Stark, Z. Sun, X. Qu, G. Wang, S. Zheng, R.L. Frost, Appl. Clay Sci. 107, 2 (2015)

    Google Scholar 

  15. Y. Zheng, J. Li, Y. Xiujie, Z. Wang, Water Air Soil Pollut. 227, 3 (2016)

    Article  Google Scholar 

  16. Q.-X. Jing, L.-Y. Chai, X.-D. Huang, C.-J. Tang, H. Guo, W. Wang, Trans. Nonferrous Metals Soc. China 27, 7 (2017)

    Article  Google Scholar 

  17. M. Ishaq, K. Saeed, A. Shoukat, I. Ahmad, A.R. Khan, IJSIT 3, 6 (2014)

    Google Scholar 

  18. S. Mahdavi, P. Molodi, M. Zarabi, Res. Chem. Intermed. 44, 9 (2018)

    Article  Google Scholar 

  19. A. Alshameri, H. He, J. Zhu, Y. Xi, R. Zhu, L. Ma, Q. Tao, Appl. Clay Sci. 159, 2 (2018)

    Article  Google Scholar 

  20. T.M. Vu, V.T. Trinh, D.P. Doan, H.T. Van, T.V. Nguyen, S. Vigneswaran, H.H. Ngo, Sci. Total Environ. 579, 4 (2017)

    Article  Google Scholar 

  21. L. Juan, Z. Pan-yue, G. Ying, S. Xiang-guo, D. Jin-hua, Environ. Sci. Technol. 10, 4 (2008)

    Google Scholar 

  22. L. Lin, Z. Lei, L. Wang, X. Liu, Y. Zhang, C. Wan, D.-J. Lee, J.H. Tay, Sep. Purif. Technol. 103, 1 (2013)

    Article  Google Scholar 

  23. A. Alshameri, C. Yan, Y. Al-Ani, A.S. Dawood, A. Ibrahim, C. Zhou, H. Wang, J. Taiwan Inst. Chem. Eng. 45, 2 (2014)

    Article  Google Scholar 

  24. I. Terrab, R. Ouargli, B. Boukoussa, K. Ghomari, R. Hamacha, R. Roy, A. Azzouz, A. Bengueddach, Res. Chem. Intermed. 43, 7 (2017)

    Article  Google Scholar 

  25. S. Sharifnia, M.A. Khadivi, T. Shojaeimehr, Y. Shavisi J. Saudi Chem. Soc. 20, (2016)

  26. A.M. Yusof, L.K. Keat, Z. Ibrahim, Z.A. Majid, N.A. Nizam, J. Hazard. Mater. 174, 1 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation China (Grant No. 51679041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinshan Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arefe, A., Song, X., Wang, Y. et al. Preparation of modified Chinese medical stone and its performance on the removal of low-concentration ammonium from water. Res Chem Intermed 46, 2035–2054 (2020). https://doi.org/10.1007/s11164-019-04058-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-04058-x

Keywords

Navigation