Skip to main content

Advertisement

Log in

Clinical lactation studies and the role of pharmacokinetic modeling and simulation in predicting drug exposures in breastfed infants

  • Review Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

The relative lack of information on medication use during breastfeeding is an ongoing problem for health professionals and mothers alike. Most nursing mothers are prescribed some form of medication, yet some mothers either discontinue breastfeeding or avoid medications entirely. Although regulatory authorities have proposed a framework for clinical lactation studies, data on drug passage into breastmilk are often lacking. Model-based approaches can potentially be used to estimate the passage of drugs into milk, predict exposures in breastfed infants, and identify drugs that need clinical lactation studies. When a human study is called for, measurement of the drug concentration in milk are often adequate to characterize safety. Data from these studies can be leveraged to further refine pharmacokinetic models with subsequent Monte Carlo simulations to estimate the spread of exposure values. Both clinical lactation studies and model-based approaches have some limitations and pitfalls which are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. AAP Section on Breastfeeding (2012) Breastfeeding and the use of human milk. Pediatrics 129(3):e827–841

  2. Sankar MJ, Sinha B, Chowdhury R, Bhandari N, Taneja S, Martines J, Bahl R (2015) Optimal breastfeeding practices and infant and child mortality—a systematic review and meta-analysis. Acta Paediatr Suppl 104(467s):3–13

    Google Scholar 

  3. Godfrey JR, Lawrence RA (2010) Toward optimal health: the maternal benefits of breastfeeding. J Womens Health (Larchmt) 19(9):1597–1602

    Google Scholar 

  4. Chowdhury R, Sinha B, Sankar MJ, Taneja S, Bhandari N, Rollins N, Bahl R, Martines J (2015) Breastfeeding and maternal health outcomes: a systematic review and meta-analysis. Acta Paediatr Suppl 104(467):96–113

    Google Scholar 

  5. U.S. Office of Disease Prevention and Health Promotion. Healthy People 2020.https://www.healthypeople.gov/2020/topics-objectives/topic/maternal-infant-and-child-health

  6. Bartick MC, Schwarz EB, Green BD, Jegier BJ, Reinhold AG, Colaizy TT, Bogen DL, Schaefer AJ, Stuebe AM (2017) Suboptimal breastfeeding in the United States: maternal and pediatric health outcomes and costs. Matern Child Nutr 13(1):e12366

    Google Scholar 

  7. Walters DD, Phan LTH, Mathisen R (2019) The cost of not breastfeeding: global results from a new tool. Health Policy Plan 34(6):407–417

    PubMed  PubMed Central  Google Scholar 

  8. Centers for Disease Control and Prevention (2018) Breastfeeding report card.https://www.cdc.gov/breastfeeding/data/reportcard.htm. Accessed Jan 7, 2020

  9. McClatchey AK, Shield A, Cheong LH, Ferguson SL, Cooper GM, Kyle GJ (2018) Why does the need for medication become a barrier to breastfeeding? A narrative review. Women Birth 31(5):362–366

    PubMed  Google Scholar 

  10. Ahluwalia IB, Morrow B, Hsia J (2005) Why do women stop breastfeeding? Findings from the pregnancy risk assessment and monitoring system. Pediatrics 116(6):1408–1412

    PubMed  Google Scholar 

  11. Noviani M, Wasserman S, Clowse ME (2016) Breastfeeding in mothers with systemic lupus erythematosus. Lupus 25(9):973–979

    PubMed  CAS  Google Scholar 

  12. Ince-Askan H, Hazes JMW, Dolhain RJEM (2019) Breastfeeding among women with rheumatoid arthritis compared with the general population: results from a nationwide prospective cohort study. J Rheumatol 46(9):1067–1074. https://doi.org/10.3899/jrheum.180805

    Article  PubMed  CAS  Google Scholar 

  13. Byrne JJ, Spong CY (2019) “Is it safe?” The many unanswered questions about medications and breast-feeding. N Engl J Med 380(14):1296–1297

    PubMed  Google Scholar 

  14. Department of Health and Human Services Food and Drug Administration (2005) Guidance for industry. Clinical lactation studies: study design, data analysis and recommendations for labeling. Draft guidance. https://www.fda.gov/RegulatoryInformation/Guidances/ucm127484.htm. Accessed July 31, 2017

  15. Department of Health and Human Services Food and Drug Administration (2019) Clinical lactation studies: considerations for study design, pp 1–10. https://www.federalregister.gov/documents/2019/2005/2009/2019-09528/guidance-clinical-lactation-studies-considerations-for-study-design

  16. Allen JC, Keller RP, Archer P, Neville MC (1991) Studies in human lactation: milk composition and daily secretion rates of macronutrients in the first year of lactation. Am J Clin Nutr 54(1):69–80

    PubMed  CAS  Google Scholar 

  17. Begg EJ, Duffull SB, Hackett LP, Ilett KF (2002) Studying drugs in milk: time to unify the approach. J Hum Lact 18(4):323–332

    PubMed  Google Scholar 

  18. Daly SE, Owens RA, Hartmann PE (1993) The short-term synthesis and infant-regulated removal of milk in lactating women. Exp Physiol 78(2):209–220

    PubMed  CAS  Google Scholar 

  19. Daly SE, Kent JC, Owens RA, Hartmann PE (1996) Frequency and degree of milk removal and the short-term control of human milk synthesis. Exp Physiol 81(5):861–875

    PubMed  CAS  Google Scholar 

  20. Kent JC, Mitoulas LR, Cregan MD, Ramsay DT, Doherty DA, Hartmann PE (2006) Volume and frequency of breastfeedings and fat content of breast milk throughout the day. Pediatrics 117(3):e387–e395

    PubMed  Google Scholar 

  21. Olagunju A, Amara A, Waitt C, Else L, Penchala SD, Bolaji O, Soyinka J, Siccardi M, Back D, Owen A, Khoo S (2015) Validation and clinical application of a method to quantify nevirapine in dried blood spots and dried breast-milk spots. J Antimicrob Chemother 70(10):2816–2822

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Olagunju A, Bolaji OO, Amara A, Waitt C, Else L, Soyinka J, Adeagbo B, Adejuyigbe E, Siccardi M, Back D, Owen A, Khoo S (2015) Development, validation and clinical application of a novel method for the quantification of efavirenz in dried breast milk spots using LC-MS/MS. J Antimicrob Chemother 70(2):555–561

    PubMed  CAS  Google Scholar 

  23. Waitt C, Olagunju A, Nakalema S, Kyohaire I, Owen A, Lamorde M, Khoo S (2018) Plasma and breast milk pharmacokinetics of emtricitabine, tenofovir and lamivudine using dried blood and breast milk spots in nursing African mother-infant pairs. J Antimicrob Chemother 73(4):1013–1019

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Saito J, Yakuwa N, Kaneko K, Nakajima K, Takai C, Goto M, Yamatani A, Murashima A (2019) Clinical application of the dried milk spot method for measuring tocilizumab concentrations in the breast milk of patients with rheumatoid arthritis. Int J Rheum Dis 22(6):1130–1137

    PubMed  CAS  Google Scholar 

  25. Bennett PN (eds) (1988) Drugs and human lactation, 1st edn. Elsevier, Amsterdam, p 29

  26. Anderson PO, Valdes V (2015) Variation of milk intake over time: clinical and pharmacokinetic implications. Breastfeed Med 10(3):142–144

    PubMed  Google Scholar 

  27. Larsen ER, Damkier P, Pedersen LH, Fenger-Gron J, Mikkelsen RL, Nielsen RE, Linde VJ, Knudsen HE, Skaarup L, Videbech P (2015) Use of psychotropic drugs during pregnancy and breast-feeding. Acta Psychiatr Scand Suppl 445:1–28

    Google Scholar 

  28. Bennett PN, Notarianni LJ (1996) Risk from drugs in breast milk: an analysis by relative dose. Br J Clin Pharmacol 42:P673–P674 (Abstract)

    Google Scholar 

  29. Ito S, Koren G (1994) A novel index for expressing exposure to the infant to drugs in breast milk. Br J Clin Pharmacol 38:99–102

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Kacirova I, Grundmann M, Brozmanova H (2019) A short communication: lamotrigine levels in milk, mothers and breast-fed infants during the 1st postnatal month. Ther Drug Monit 41(3):401–404

    PubMed  CAS  Google Scholar 

  31. Meador KJ, Baker GA, Browning N, Cohen MJ, Bromley RL, Clayton-Smith J, Kalayjian LA, Kanner A, Liporace JD, Pennell PB, Privitera M, Loring DW (2014) Breastfeeding in children of women taking antiepileptic drugs: cognitive outcomes at age 6 years. JAMA Pediatr 168(8):729–736

    PubMed  PubMed Central  Google Scholar 

  32. Tanoshima R, Bournissen FG, Tanigawara Y, Kristensen JH, Taddio A, Ilett KF, Begg EJ, Wallach I, Ito S (2014) Population PK modelling and simulation based on fluoxetine and norfluoxetine concentrations in milk: a milk concentration-based prediction model. Br J Clin Pharmacol 78(4):918–928

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Mountford PJ, Coakley AJ (1989) A review of the secretion of radioactivity in human breast milk: data, quantitative analysis and recommendations. Nucl Med Commun 10(1):15–27

    PubMed  CAS  Google Scholar 

  34. Stabin MG, Breitz HB (2000) Breast milk excretion of radiopharmaceuticals: mechanisms, findings, and radiation dosimetry. J Nucl Med 41(5):863–873

    PubMed  CAS  Google Scholar 

  35. Howe DB, Beardsley M, Bakhsh S (2008) Appendix U. Model procedure for release of patients or human research subjects administered radioactive materials. In, NUREG-1556. Consolidated guidance about materials licenses. Program-specific guidance about medical use licenses. Final report. US Nuclear Regulatory Commission Office of Nuclear Material Safety and Safeguards 9, Rev. 2

  36. Ou L, Wang H, Chen C, Chen L, Zhang W, Wang X (2018) Physiologically based pharmacokinetic (PBPK) modeling of human lactational transfer of methylmercury in China. Environ Int 115:180–187

    PubMed  CAS  Google Scholar 

  37. Redding LE, Sohn MD, McKone TE, Chen JW, Wang SL, Hsieh DP, Yang RS (2008) Population physiologically based pharmacokinetic modeling for the human lactational transfer of PCB-153 with consideration of worldwide human biomonitoring results. Environ Health Perspect 116(12):1629–1635

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Byczkowski JZ, Lipscomb JC (2001) Physiologically based pharmacokinetic modeling of the lactational transfer of methylmercury. Risk Anal 21(5):869–882

    PubMed  CAS  Google Scholar 

  39. Clewell RA, Gearhart JM (2002) Pharmacokinetics of toxic chemicals in breast milk: use of PBPK models to predict infant exposure. Environ Health Perspect 110:A333–A337

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Wagner C, Zhao P, Pan Y, Hsu V, Grillo J, Huang SM, Sinha V (2015) Application of physiologically based pharmacokinetic (PBPK) modeling to support dose selection: report of an FDA public workshop on PBPK. CPT Pharmacometrics Syst Pharmacol 4(4):226–230. https://doi.org/10.1002/psp4.33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Shepard T, Scott G, Cole S, Nordmark A, Bouzom F (2015) Physiologically based models in regulatory submissions: output from the ABPI/MHRA forum on physiologically based modeling and simulation. CPT Pharmacomet Syst Pharmacol 4(4):221–225. https://doi.org/10.1002/psp4.30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Luzon E, Blake K, Cole S, Nordmark A, Versantvoort C, Berglund EG (2017) Physiologically based pharmacokinetic modeling in regulatory decision-making at the European Medicines Agency. Clin Pharmacol Ther 102(1):98–105

    PubMed  CAS  Google Scholar 

  43. Willmann S, Edginton AN, Coboeken K, Ahr G, Lippert J (2009) Risk to the breast-fed neonate from codeine treatment to the mother: a quantitative mechanistic modeling study. Clin Pharmacol Ther 86(6):634–643

    PubMed  CAS  Google Scholar 

  44. Mielke H, Gundert-Remy U, Partosch F, Stahlmann R (2012) Alcohol concentrations in breastfed babies—physiologically based modelling as a decision aid. Naunyn-Schmiedebergs Arch Pharmacol 385(1):59

    Google Scholar 

  45. Abduljalil K, Johnson TN, Jamei M (2017) Development and integration of a dynamic lactation model within a full PBPK model. J Pharmacokinet Pharmacodyn 44:S89–S90. Abstract. T-084

    Google Scholar 

  46. Abduljalil K, Johnson TN, Jamei M (2017) Application of physiologically-based pharmacokinetic model to predict tramadol concentration in human milk. Population Approach Group Europe (PAGE) 26th annual meeting wwwpage-meetingorg/?abstract = 7087

  47. Karanam A, Sherwin C, Birnbaum A (2018) A PBPK model for predicting drug exposures of lamotrigine in breastfed infants. J Pharmacokinet Pharmacodyn 45(Suppl. 1):S10 (Abstract)

    Google Scholar 

  48. Partosch F, Mielke H, Stahlmann R, Gundert-Remy U (2018) Exposure of nursed infants to maternal treatment with ethambutol and rifampicin. Basic Clin Pharmacol Toxicol 123(2):213–220

    PubMed  CAS  Google Scholar 

  49. Delaney SR, Malik PRV, Stefan C, Edginton AN, Colantonio DA, Ito S (2018) Predicting escitalopram exposure to breastfeeding infants: integrating analytical and in silico techniques. Clin Pharmacokinet 57(12):1603–1611

    PubMed  CAS  Google Scholar 

  50. Garessus EDG, Mielke H, Gundert-Remy U (2019) Exposure of infants to isoniazid via breast milk after maternal drug intake of recommended doses is clinically insignificant irrespective of metaboliser status. A physiologically-based pharmacokinetic (PBPK) modelling approach to estimate drug exposure of infants via breast-feeding. Front Pharmacol 10:5

    PubMed  PubMed Central  CAS  Google Scholar 

  51. Anderson PO, Sauberan JB (2016) Modeling drug passage into human milk. Clin Pharmacol Ther 100(1):42–52

    PubMed  CAS  Google Scholar 

  52. Garcia-Lino AM, Alvarez-Fernandez I, Blanco-Paniagua E, Merino G, Alvarez AI (2019) Transporters in the mammary gland—contribution to presence of nutrients and drugs into milk. Nutrients 11(10):2372

    PubMed Central  CAS  Google Scholar 

  53. Ventrella D, Forni M, Bacci ML, Annaert P (2019) Non-clinical models to determine drug passage into human breast milk. Curr Pharm Des 25(5):534–548

    PubMed  CAS  Google Scholar 

  54. Anon (2014) Content and format of labeling for human prescription drug and biological products; requirements for pregnancy and lactation labeling. Fed Reg 79(233):72064–72105

    Google Scholar 

  55. Ito N, Ito K, Koshimichi H, Hisaka A, Honma M, Igarashi T, Suzuki H (2013) Contribution of protein binding, lipid partitioning, and asymmetrical transport to drug transfer into milk in mouse versus human. Pharm Res 30(9):2410–2422

    PubMed  CAS  Google Scholar 

  56. Anderson PO (2018) Drugs in lactation. Pharm Res 35(3):45

    PubMed  Google Scholar 

  57. Baker TE, Cooper SD, Kessler L, Hale TW (2015) Transfer of natalizumab into breast milk in a mother with multiple sclerosis. J Hum Lact 31(2):233–236

    PubMed  Google Scholar 

  58. Clowse ME, Forger F, Hwang C, Thorp J, Dolhain RJ, van Tubergen A, Shaughnessy L, Simpson J, Teil M, Toublanc N, Wang M, Hale TW (2017) Minimal to no transfer of certolizumab pegol into breast milk: results from CRADLE, a prospective, postmarketing, multicentre, pharmacokinetic study. Ann Rheum Dis 76(11):1890–1896

    PubMed  PubMed Central  CAS  Google Scholar 

  59. Bertrand KA, Hanan NJ, Honerkamp-Smith G, Best BM, Chambers CD (2018) Marijuana use by breastfeeding mothers and cannabinoid concentrations in breast milk. Pediatrics 142(3):e20181076

    PubMed  PubMed Central  Google Scholar 

  60. Bertrand K, Kao K, Chambers CD (2015) Alcohol use among breastfeeding women in the UCSD breast milk biorepository cohort. Birth Defects Res A 103(5):455 (Abstract)

    Google Scholar 

  61. Chambers C, Bertrand K (2018) Drugs in breastmilk: addition of a human breast milk repository sample collection and associated data appended to a set of US/Canadian pregnancy registries. Birth Defects Res 110(9):747 (Abstract)

    Google Scholar 

  62. Dallmann A, Mian P, Van den Anker J, Allegaert K (2019) Clinical pharmacokinetic studies in pregnant women and the relevance of pharmacometric tools. Curr Pharm Des 25(5):483–495

    PubMed  CAS  Google Scholar 

  63. Anderson PO, Pochop SL, Manoguerra AS (2003) Adverse drug reactions in breastfed infants: less than imagined. Clin Pediatr (Phila) 42:325–340

    Google Scholar 

  64. Soussan C, Gouraud A, Portolan G, Jean-Pastor MJ, Pecriaux C, Montastruc JL, Damase-Michel C, Lacroix I (2014) Drug-induced adverse reactions via breastfeeding: a descriptive study in the French Pharmacovigilance Database. Eur J Clin Pharmacol 70(11):1361–1366

    PubMed  CAS  Google Scholar 

  65. Anderson PO, Manoguerra AS, Valdes V (2016) A review of adverse reactions in infants from medications in breastmilk. Clin Pediatr (Phila) 55(3):236–244

    Google Scholar 

  66. Beauchamp GA, Hendrickson RG, Horowitz BZ, Spyker DA (2019) Exposures through breast milk: an analysis of exposure and information calls to U.S. poison centers, 2001–2017. Breastfeed Med 14(7):508–512

    PubMed  Google Scholar 

  67. Momper JD, Best BM, Wang J, Stek A, Cressey TR, Burchett S, Kreitchmann R, Shapiro DE, Smith E, Chakhtoura N, Capparelli EV, Mirochnick M (2018) Tenofovor alafenamide pharmacokinetics with and without cobicistat in pregnancy. Presented at 22nd International AIDS Conference Amsterdam, The Netherlands

  68. Mulligan N, Best BM, Wang J, Capparelli EV, Stek A, Barr E, Buschur SL, Acosta EP, Smith E, Chakhtoura N, Burchett S, Mirochnick M (2018) Dolutegravir pharmacokinetics in pregnant and postpartum women living with HIV. AIDS 32(6):729–737. https://doi.org/10.1097/qad.0000000000001755

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Mahadevan U, Robinson C, Bernasko N, Boland B, Chambers C, Dubinsky M, Friedman S, Kane S, Manthey J, Sauberan J, Stone J, Jain R (2019) Inflammatory bowel disease in pregnancy clinical care pathway: a report from the American Gastroenterological Association IBD Parenthood Project Working Group. Gastroenterology 156(5):1508–1524

    PubMed  Google Scholar 

  70. Puchner A, Grochenig HP, Sautner J, Helmy-Bader Y, Juch H, Reinisch S, Hogenauer C, Koch R, Hermann J, Studnicka-Benke A, Weger W, Puchner R, Dejaco C (2019) Immunosuppressives and biologics during pregnancy and lactation: a consensus report issued by the Austrian Societies of Gastroenterology and Hepatology and Rheumatology and Rehabilitation. Wien Klin Wochenschr 131(1–2):29–44

    PubMed  PubMed Central  Google Scholar 

  71. Flint J, Panchal S, Hurrell A, van de Venne M, Gayed M, Schreiber K, Arthanari S, Cunningham J, Flanders L, Moore L, Crossley A, Purushotham N, Desai A, Piper M, Nisar M, Khamashta M, Williams D, Gordon C, Giles I (2016) BSR and BHPR guideline on prescribing drugs in pregnancy and breastfeeding-part I: standard and biologic disease modifying anti-rheumatic drugs and corticosteroids. Rheumatology 55(9):1693–1697

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip O. Anderson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, P.O., Momper, J.D. Clinical lactation studies and the role of pharmacokinetic modeling and simulation in predicting drug exposures in breastfed infants. J Pharmacokinet Pharmacodyn 47, 295–304 (2020). https://doi.org/10.1007/s10928-020-09676-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-020-09676-2

Keywords

Navigation