Skip to main content

Advertisement

Log in

Rice husk lignin-based porous carbon and ZnO composite as an anode for high-performance lithium-ion batteries

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

ZnO is considered to be the next generation lithium-ion battery anode material due to its high theoretical capacity, low potential, abundant resources and low toxicity. However, high volume expansion during charge–discharge process makes ZnO powdered and agglomerated easily. In the work, we fabricate a porous carbon skeleton by using rice husk (RH) lignin, and the ZnO nanoparticles are supported on the skeleton uniformly. Its unique structure provides excellent stability and electrical conductivity. RH as a carbon source will improve the utilization rate of biomass materials in the refining process. The samples were characterised by XRD, Raman, TG, SEM and transmission electron microscopy, and the materials presented a promising Li storage properties and electrochemical performance with a discharge capacity of 898.1 mAh g−1 at 0.2C after 110 cycles, which is very close to the theoretical specific capacity of zinc oxide (978 mAh g−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Eftekhari, ACS Sustain. Chem. Eng. 7, 5602–5613 (2019)

    Article  CAS  Google Scholar 

  2. G. Zhang, S. Hou, H. Zhang, Adv. Mater. 27, 2400–2405 (2015)

    Article  CAS  PubMed  Google Scholar 

  3. S. Kundu, S. Sain, M. Yoshio, Appl. Surf. Sci. 329, 206–211 (2015)

    Article  CAS  Google Scholar 

  4. J. Kim, S.A. Hong, J. Yoo, Chem. Eng. J. 266, 179–188 (2015)

    Article  CAS  Google Scholar 

  5. H. Li, Y. Wei, Y. Zhao et al., J. Nanomater. 7, 1–6 (2016)

    Article  CAS  Google Scholar 

  6. Q. Xie, J. Li, Q. Tian, J. Mater. Chem. 22, 13541–13547 (2012)

    Article  CAS  Google Scholar 

  7. N. Li, S. Jin, Q. Liao et al., ACS Appl. Mater. Interfaces 6, 20590 (2014)

    Article  CAS  PubMed  Google Scholar 

  8. Y. Song, Y. Chen, J. Wu et al., J. Alloy Compd. 694, 1246–1253 (2017)

    Article  CAS  Google Scholar 

  9. T. Deng, X. Zhou, Mater. Lett. 176, 151–154 (2016)

    Article  CAS  Google Scholar 

  10. H. Köse, K. Şeyma, A.O. Aydın, J. Power Sources 295, 235–245 (2015)

    Article  CAS  Google Scholar 

  11. L. Ji, X. Zhang, Electrochim. Commun. 11, 684–687 (2009)

    Article  CAS  Google Scholar 

  12. G.T.K. Fey, D.C. Lee, Y.Y. Lin, T.P. Kumar, Synth. Met. 139, 71–80 (2003)

    Article  CAS  Google Scholar 

  13. R.A. Adams, A.D. Dysart, R. Esparza et al., Ind. Eng. Chem. Res. 55, 8706–8712 (2016)

    Article  CAS  Google Scholar 

  14. G.T.K. Fey, C.L. Chen, J. Power Sources 97(98), 47–51 (2001)

    Article  Google Scholar 

  15. E. Peleda, V. Eshkenazi, Y. Rosenberg, J. Power Sources 76, 153–158 (1998)

    Article  Google Scholar 

  16. J. Zhang, J. Xiang, Z. Dong et al., Electrochim. Acta 116, 146–151 (2014)

    Article  CAS  Google Scholar 

  17. Y. Li, Y. Gao, H. Qi, K. Yu, C. Liang, RSC Adv. 8, 33019–33024 (2018)

    Article  CAS  Google Scholar 

  18. J. Hou, C. Cao, X. Ma, F. Idrees, B. Xu, X. Hao, W. Lin, Sci. Rep. 4, 7260–7265 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. R. Pode, Renew. Sustain. Energy Rev. 53, 1468–1485 (2016)

    Article  Google Scholar 

  20. H.J. Kim, J.H. Choi, J.W. Choi, Nano Converg. 4, 24 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. T.K. Fey, C.L. Chen, J. Power Sources 97, 47–51 (2001)

    Article  Google Scholar 

  22. W. Yu, X. Chen, W. Mei, Appl. Surf. Sci. 4, 129–138 (2017)

    Article  CAS  Google Scholar 

  23. C. He, S. Wu, N. Zhao, ACS Nano 7, 4459–4469 (2013)

    Article  CAS  PubMed  Google Scholar 

  24. H. Fan, H. Yu, Y. Zhang et al., Nano Energy 33, 168–176 (2017)

    Article  CAS  Google Scholar 

  25. H. Asayesh-Ardakani, W. Yao, Y. Yuan et al., Small Methods 1, 1700202 (2017)

    Article  CAS  Google Scholar 

  26. X. Sun, C. Zhou, M. Xie et al., J. Mater. Chem. A 2, 7319–7326 (2014)

    Article  CAS  Google Scholar 

  27. A. Kumar, H.M. Jena, Appl. Surf. Sci. 356, 753–761 (2015)

    Article  CAS  Google Scholar 

  28. J. Hu, D. Shen, S. Wu et al., J. Anal. Appl. Pyrolysis 127, 444–450 (2017)

    Article  CAS  Google Scholar 

  29. J. Hayashi, A. Kazehaya, K. Muroyama et al., Carbon 38, 1873–1878 (2000)

    Article  CAS  Google Scholar 

  30. C. Chen, L. Wei, P. Zhao, Adv. Mater. Res. 152–153, 1322–1327 (2010)

    Article  CAS  Google Scholar 

  31. S. Wang, L. Yang, L.P. Stubbs et al., ACS Appl. Mater. Interfaces 5, 12275–12282 (2013)

    Article  CAS  PubMed  Google Scholar 

  32. K. Yu, J. Li, H. Qi, ChemistrySelect 2, 3627–3632 (2017)

    Article  CAS  Google Scholar 

  33. J.H. Lee, K.H. Ko, B.O. Park, J. Cryst. Growth 247, 119–125 (2003)

    Article  CAS  Google Scholar 

  34. Z. Ren, Z. Wang, C. Chen, J. Cryst. Growth 146, 52–59 (2014)

    CAS  Google Scholar 

  35. Y. Sharma, N. Sharma, G.V. Subba Rao, Adv. Funct. Mater. 17, 2855–2861 (2007)

    Article  CAS  Google Scholar 

  36. N. Dkhireche, A. Dahami, A. Rochdi, J. Ind. Eng. Chem. 19(6), 1996–2003 (2013)

    Article  CAS  Google Scholar 

  37. G. Rong, W. Yue, Y. An, Electrochim. Acta 35, 161–167 (2014)

    Google Scholar 

  38. J. Liu, Y. Li, X. Huang, Adv. Funct. Mater. 18, 1448–1458 (2008)

    Article  CAS  Google Scholar 

  39. A. Eftekhari, Energy Storage Mater. 7, 157–180 (2017)

    Article  Google Scholar 

  40. Y. Chen, C. Yan, G.S. Oliver, Adv. Energy Mater. 3, 1269–1274 (2013)

    Article  CAS  Google Scholar 

  41. S.M. Abbas, S.T. Hussain, S. Ali, J. Mater. Sci. 48, 5429–5436 (2013)

    Article  CAS  Google Scholar 

  42. Z. Chen, R. Wu, H. Wang, Chem. Eng. J. 326, 680–690 (2017)

    Article  CAS  Google Scholar 

  43. Q. Zhan, X. Hui, N. Hui, J. Alloys Compd. 737, 330–336 (2018)

    Article  CAS  Google Scholar 

  44. Y. Zou, Z. Qi, Z. Ma, J. Electroanal. Chem. 788, 184–191 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Key Research and Development Program of China (2016YFF0201204); the Project of Jilin Provincial Science and Technology Department (20180201074GX, 20190201110JC, 20190302055GX); Project of Jilin Province Development and Reform Commission (2019C046-2); Open Project of State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University (2019–8).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jicai Liang or Ce Liang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, K., Liu, T., Zheng, Q. et al. Rice husk lignin-based porous carbon and ZnO composite as an anode for high-performance lithium-ion batteries. J Porous Mater 27, 875–882 (2020). https://doi.org/10.1007/s10934-019-00824-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-019-00824-9

Keywords

Navigation