Skip to main content
Log in

Application of Reversible Jump Markov Chain Monte Carlo Algorithms to Elastic and Petrophysical Amplitude-Versus-Angle Inversions

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We infer the elastic and petrophysical properties from pre-stack seismic data through a transdimensional Bayesian inversion. In this approach the number of model parameters (i.e. the number of layers) is treated as an unknown, and a reversible jump Markov Chain Monte Carlo (rjMCMC) algorithm is used to sample the variable-dimension model space. This inversion scheme provides a parsimonious solution, and reliably quantifies the uncertainties affecting the estimated model parameters. Parallel tempering, which employs a sequence of interacting Markov chains in which the likelihood function is successively relaxed, is used to improve the efficiency of the probabilistic sampling. In addition, the delayed rejection updating scheme is employed to speed up the convergence of the rjMCMC algorithm to the stationary regime. Both elastic and petrophysical inversions invert the amplitude versus angle responses and employ a convolutional forward modelling based on the exact Zoeppritz equations. First, synthetic tests are used to assess the reliability of the implemented rjMCMC algorithms, then their applicability is demonstrated by inverting field seismic data acquired onshore. In this case the inversion was aimed at inferring the elastic and petrophysical properties around a gas-saturated reservoir hosted in a shale-sand sequence. In this case, the final outcomes provided by the rjMCMC algorithms are also compared with the predictions of linear Bayesian elastic and petrophysical inversions. The synthetic and field data examples demonstrate that the implemented algorithms can successfully estimate model uncertainty, model dimensionality and subsurface parameters with an affordable computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Agostinetti, N. P., & Malinverno, A. (2010). Receiver function inversion by trans-dimensional Monte Carlo sampling. Geophysical Journal International,181(2), 858–872.

    Google Scholar 

  • Aki, K., & Richards, P. G. (1980). Quantative seismology: Theory and methods. New York.

  • Al-Awadhi, F., Hurn, M., & Jennison, C. (2004). Improving the acceptance rate of reversible jump MCMC proposals. Statistics & Probability Letters,69(2), 189–198.

    Google Scholar 

  • Aleardi, M. (2018). Estimating petrophysical reservoir properties through extended elastic impedance inversion: applications to off-shore and on-shore reflection seismic data. Journal of Geophysics and Engineering,15(5), 2079–2090.

    Google Scholar 

  • Aleardi, M., & Ciabarri, F. (2017). Assessment of different approaches to rock-physics modeling: A case study from offshore Nile Delta. Geophysics, 82(1), MR15–MR25.

  • Aleardi, M., Ciabarri, F., & Gukov, T. (2018a). A two-step inversion approach for seismic-reservoir characterization and a comparison with a single-loop Markov-chain Monte Carlo algorithm. Geophysics,83(3), R227–R244.

    Google Scholar 

  • Aleardi, M., Ciabarri, F., & Gukov, T. (2018b). Reservoir characterization through target-oriented AVA-petrophysical inversions with spatial constraints. Pure and Applied Geophysics,176(2), 901–924.

    Google Scholar 

  • Ando, T. (2010). Bayesian model selection and statistical modeling. Boca Raton: Chapman and Hall/CRC.

    Google Scholar 

  • Aster, R. C., Borchers, B., & Thurber, C. H. (2018). Parameter estimation and inverse problems. Amsterdam: Elsevier.

    Google Scholar 

  • Avseth, P., Mukerji, T., & Mavko, G. (2010). Quantitative seismic interpretation: Applying rock physics tools to reduce interpretation risk. Cambridge: Cambridge University Press.

    Google Scholar 

  • Bianco, E. (2016). Tutorial: Wavelet estimation for well ties. The Leading Edge,35(6), 541–543.

    Google Scholar 

  • Bodin, T., & Sambridge, M. (2009). Seismic tomography with the reversible jump algorithm. Geophysical Journal International,178(3), 1411–1436.

    Google Scholar 

  • Bodin, T., Sambridge, M., Tkalčić, H., Arroucau, P., Gallagher, K., & Rawlinson, N. (2012). Transdimensional inversion of receiver functions and surface wave dispersion. Journal of Geophysical Research: Solid Earth,117, B02301.

    Google Scholar 

  • Bosch, M., Cara, L., Rodrigues, J., Navarro, A., & Díaz, M. (2007). A Monte Carlo approach to the joint estimation of reservoir and elastic parameters from seismic amplitudes. Geophysics,72(6), O29–O39.

    Google Scholar 

  • Brooks, S. P., Giudici, P., & Roberts, G. O. (2003a). Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions. Journal of the Royal Statistical Society: Series B (Statistical Methodology),65(1), 3–39.

    Google Scholar 

  • Brooks, S. P., Giudici, P., & Philippe, A. (2003b). Nonparametric convergence assessment for MCMC model selection. Journal of Computational and Graphical Statistics,12(1), 1–22.

    Google Scholar 

  • Buland, A., & Omre, H. (2003). Bayesian linearized AVO inversion. Geophysics,68(1), 185–198.

    Google Scholar 

  • Cho, Y., Gibson, R. L., Jr., & Zhu, D. (2018). Quasi 3D transdimensional Markov-chain Monte Carlo for seismic impedance inversion and uncertainty analysis. Interpretation,6(3), T613–T624.

    Google Scholar 

  • Dadi, S., Gibson, R., & Wang, K. (2016). Velocity log upscaling based on reversible jump Markov chain Monte Carlo simulated annealing RJMCMC-based sonic log upscaling. Geophysics,81(5), R293–R305.

    Google Scholar 

  • de Nicolao, A., Drufuca, G., & Rocca, F. (1993). Eigenvalues and eigenvectors of linearized elastic inversion. Geophysics,58(5), 670–679.

    Google Scholar 

  • Dettmer, J., & Dosso, S. E. (2012). Trans-dimensional matched-field geoacoustic inversion with hierarchical error models and interacting Markov chains. The Journal of the Acoustical Society of America,132(4), 2239–2250.

    Google Scholar 

  • Dosso, S. E., Holland, C. W., & Sambridge, M. (2012). Parallel tempering for strongly nonlinear geoacoustic inversion. The Journal of the Acoustical Society of America,132(5), 3030–3040.

    Google Scholar 

  • Dosso, S. E., Dettmer, J., Steininger, G., & Holland, C. W. (2014). Efficient trans-dimensional Bayesian inversion for geoacoustic profile estimation. Inverse Problems,30(11), 114018.

    Google Scholar 

  • Falcioni, M., & Deem, M. W. (1999). A biased Monte Carlo scheme for zeolite structure solution. The Journal of Chemical Physics,110(3), 1754–1766.

    Google Scholar 

  • Galetti, E., & Curtis, A. (2018). Transdimensional electrical resistivity tomography. Journal of Geophysical Research: Solid Earth,123(8), 6347–6377.

    Google Scholar 

  • Gelman, A., Stern, H. S., Carlin, J. B., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013). Bayesian data analysis. Boca Raton: Chapman and Hall/CRC.

  • Geyer, C. J., & Møller, J. (1994). Simulation procedures and likelihood inference for spatial point processes. Scandinavian Journal of Statistics, 21(4), 359–373.

    Google Scholar 

  • Gilks, W. R., Richardson, S., & Spiegelhalter, D. (1995). Markov chain Monte Carlo in practice. Boca Raton: CRC Press.

    Google Scholar 

  • Grana, D., & Della Rossa, E. (2010). Probabilistic petrophysical-properties estimation integrating statistical rock physics with seismic inversion. Geophysics,75(3), O21–O37.

    Google Scholar 

  • Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika,82, 711–732.

    Google Scholar 

  • Green, P. J., & Mira, A. (2001). Delayed rejection in reversible jump Metropolis–Hastings. Biometrika,88(4), 1035–1053.

    Google Scholar 

  • Haario, H., Saksman, E., & Tamminen, J. (1999). Adaptive proposal distribution for random walk Metropolis algorithm. Computational Statistics,14(3), 375–396.

    Google Scholar 

  • Haario, H., Saksman, E., & Tamminen, J. (2001). An adaptive Metropolis algorithm. Bernoulli,7(2), 223–242.

    Google Scholar 

  • Haario, H., Laine, M., Mira, A., & Saksman, E. (2006). DRAM: efficient adaptive MCMC. Statistics and Computing,16(4), 339–354.

    Google Scholar 

  • Malinverno, A. (2000). A Bayesian criterion for simplicity in inverse problem parametrization. Geophysical Journal International,140(2), 267–285.

    Google Scholar 

  • Malinverno, A. (2002). Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem. Geophysical Journal International,151(3), 675–688.

    Google Scholar 

  • Malinverno, A., & Briggs, V. A. (2004). Expanded uncertainty quantification in inverse problems: Hierarchical Bayes and empirical Bayes. Geophysics,69(4), 1005–1016.

    Google Scholar 

  • Mandolesi, E., Ogaya, X., Campanyà, J., & Agostinetti, N. P. (2018). A reversible-jump Markov chain Monte Carlo algorithm for 1D inversion of magnetotelluric data. Computers & Geosciences,113, 94–105.

    Google Scholar 

  • Martin, G. S., Wiley, R., & Marfurt, K. J. (2006). Marmousi2: An elastic upgrade for Marmousi. The Leading Edge,25(2), 156–166.

    Google Scholar 

  • Misra, S., & Sacchi, M. D. (2008). Global optimization with model-space preconditioning: Application to AVO inversion. Geophysics,73(5), R71–R82.

    Google Scholar 

  • Mosegaard, K., & Sambridge, M. (2002). Monte Carlo analysis of inverse problems. Inverse problems,18(3), R29.

    Google Scholar 

  • Passos de Figueiredo, L., Grana, D., Luis Bordignon, F., Santos, M., Roisenberg, M., & Rodrigues, B. B. (2018). Joint Bayesian inversion based on rock-physics prior modeling for the estimation of spatially correlated reservoir properties. Geophysics,83(5), 1–53.

    Google Scholar 

  • Ray, A. K., & Chopra, S. (2016). Building more robust low-frequency models for seismic impedance inversion. First Break,34(5), 47–52.

    Google Scholar 

  • Ray, A., Kaplan, S., Washbourne, J., & Albertin, U. (2017). Low frequency full waveform seismic inversion within a tree based Bayesian framework. Geophysical Journal International,212(1), 522–542.

    Google Scholar 

  • Sajeva, A., Aleardi, M., & Mazzotti, A. (2017). Genetic algorithm full-waveform inversion: uncertainty estimation and validation of the results. Bollettino di Geofisica Teorica ed Applicata, 58(4), 395–414.

    Google Scholar 

  • Sambridge, M. (2014). A parallel tempering algorithm for probabilistic sampling and multimodal optimization. Geophysical Journal International,196(1), 357–374.

    Google Scholar 

  • Sambridge, M., & Mosegaard, K. (2002). Monte Carlo methods in geophysical inverse problems. Reviews of Geophysics,40(3), 3.

    Google Scholar 

  • Sambridge, M., Gallagher, K., Jackson, A., & Rickwood, P. (2006). Trans-dimensional inverse problems, model comparison and the evidence. Geophysical Journal International,167(2), 528–542.

    Google Scholar 

  • Sen, M. K., & Biswas, R. (2017). Transdimensional seismic inversion using the reversible jump Hamiltonian Monte Carlo algorithm. Geophysics,82(3), R119–R134.

    Google Scholar 

  • Sen, M. K., & Stoffa, P. L. (1996). Bayesian inference, Gibbs' sampler and uncertainty estimation in geophysical inversion. Geophysical Prospecting,44(2), 313–350.

    Google Scholar 

  • Sisson, S. A. (2005). Transdimensional Markov chains: A decade of progress and future perspectives. Journal of the American Statistical Association,100(471), 1077–1089.

    Google Scholar 

  • Tarantola, A. (2005). Inverse problem theory and methods for model parameter estimation. SIAM, Philadelphia.

  • ter Braak, C. J., & Vrugt, J. A. (2008). Differential evolution Markov chain with snooker updater and fewer chains. Statistics and Computing,18(4), 435–446.

    Google Scholar 

  • Thurin, J., Brossier, R., & Métivier, L. (2017). Ensemble-based uncertainty estimation in full waveform inversion. In 79th EAGE Conference and Exhibition 2017.

  • Tierney, L., & Mira, A. (1999). Some adaptive Monte Carlo methods for Bayesian inference. Statistics in Medicine,18(17–18), 2507–2515.

    Google Scholar 

  • Turner, B. M., & Sederberg, P. B. (2012). Approximate Bayesian computation with differential evolution. Journal of Mathematical Psychology,56(5), 375–385.

    Google Scholar 

  • Vrugt, J. A. (2016). Markov chain Monte Carlo simulation using the DREAM software package: Theory, concepts, and MATLAB implementation. Environmental Modelling & Software,75, 273–316.

    Google Scholar 

  • Xiang, E., Guo, R., Dosso, S. E., Liu, J., Dong, H., & Ren, Z. (2018). Efficient hierarchical trans-dimensional Bayesian inversion of magnetotelluric data. Geophysical Journal International,213(3), 1751–1767.

    Google Scholar 

  • Zhu, D., & Gibson, R. (2018). Seismic inversion and uncertainty quantification using transdimensional Markov chain Monte Carlo method. Geophysics,83(4), R321–R334.

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Edison for making the well-log data and the seismic data available and for the permission to publish this paper. The authors also thank Dr. Fabio Ciabarri and Dr. Timuv Gukov of Edison for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattia Aleardi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix: Acceptance Probabilities for Elastic AVA Inversion

Here we shortly derive the acceptance probabilities for each move in the implemented rjMCMC algorithm. Since we adopt the same MCMC recipe for both the elastic and petrophysical inversions, in the following we limit the attention to the elastic inversion. Similar results would be derived for the petrophysical inversion: the only difference is that the elastic property vector \({\mathbf{e}}\) would be replaced by the petrophysical property vector \({\mathbf{r}}\). For a more detailed mathematical description we refer the interested reader to Bodin and Sambridge (2009) and Dosso et al. (2014).

The Acceptance Probabilities for Fixed Dimensional Moves

In the elastic property move or interface move the number of layers remain fixed. In the former case the elastic properties are determined by applying the principal-component perturbation described in the text. For the latter we consider a Gaussian proposal with a given standard deviation \(\sigma_{z}\) centred around the current interface location. Then, the proposed interface location vector will be derived as:

$${\mathbf{z}}^{\prime } = {\mathbf{z}} + g\sigma_{z} {\mathbf{u}}_{{\mathbf{i}}} ,$$
(24)

where \(g\) is a random number drawn from the normal distribution \(N\left( {0,1} \right)\) with zero mean and standard deviation 1, and \({\mathbf{u}}_{{\mathbf{i}}}\) is the unit vector along the i-th model space dimension that identifies the perturbed interface. For these moves, the prior ratio and the proposal ratio are equal to 1, and the acceptance probability simply becomes:

$$\begin{aligned} p\left( {{\mathbf{m}}^{\prime } ,n^{\prime } {|}{\mathbf{m}},n} \right) & = {\min}\user2{ }\left[ {1,\frac{{p\left( {{\mathbf{d}}{|}{\mathbf{m}}^{\prime } ,n^{\prime } } \right)}}{{p\left( {{\mathbf{d}}{|}{\mathbf{m}},n} \right)}}} \right] \\ & = {\text{min }}\left[ {1,{\text{ exp}}\left( { - \frac{{{{\varphi }}\left( {{\mathbf{m}}^{\prime } ,n^{\prime } } \right) - {{\varphi }}\left( {{\mathbf{m}},n} \right)}}{2T}} \right)} \right]. \\ \end{aligned}$$
(25)

The Acceptance Probabilities for Transdimensional Moves

3.1 Prior Ratio

The prior ratio can be written as follows:

$$\frac{{p\left( {{\mathbf{m}}^{\prime } ,n^{\prime } } \right)}}{{p\left( {{\mathbf{m}},n} \right)}} = \frac{{p({\mathbf{e}}^{\prime } |n^{\prime } )}}{{p({\mathbf{e}}|n)}}\frac{{p({\mathbf{z}}^{\prime } |n^{\prime } )}}{{p({\mathbf{z}}|n)}}\frac{{p\left( {n^{\prime } } \right)}}{p\left( n \right)},$$
(26)

where \(n^{\prime} = n + 1\) for a birth move and \(n^{\prime} = n - 1\) for a death move. By extending Eq. 14.1 for a birth move we get:

$$\begin{aligned} \frac{{p\left( {{\mathbf{m}}^{\prime } ,n^{\prime } } \right)}}{{p\left( {{\mathbf{m}},n} \right)}} & = \frac{{\left( {n + 1} \right)!\left( {N - \left( {n + 1} \right)} \right)!}}{{N! \Delta n \mathop \prod \nolimits_{i = 1}^{3} \left( {\Delta {\mathbf{e}}_{i}^{n + 1} } \right)}} \times \frac{{N! \Delta n \mathop \prod \nolimits_{i = 1}^{3} \left( {\Delta {\mathbf{e}}_{i}^{n} } \right)}}{{n!\left( {N - n} \right)!}} \\ & = \frac{n + 1}{{\left( {N - n} \right)\mathop \prod \nolimits_{i = 1}^{3} \left( {\Delta {\mathbf{e}}_{i} } \right)}} \\ \end{aligned}$$
(27)

where N is the number of discrete time samples forming the considered vertical interval.

Similarly, for a death move we obtain:

$$\begin{aligned} \frac{{p\left( {{\mathbf{m}}^{\prime } ,n^{\prime } } \right)}}{{p\left( {{\mathbf{m}},n} \right)}} & = \frac{{\left( {n - 1} \right)!\left( {N - \left( {n - 1} \right)} \right)!}}{{N! \Delta n \mathop \prod \nolimits_{i = 1}^{3} \left( {\Delta {\mathbf{e}}_{i}^{n - 1} } \right)}} \times \frac{{N! \Delta n \mathop \prod \nolimits_{i = 1}^{3} \left( {\Delta {\mathbf{e}}_{i}^{n} } \right)}}{{n!\left( {N - n} \right)!}} \\ & = \frac{{\mathop \prod \nolimits_{i = 1}^{3} \left( {\Delta {\mathbf{e}}_{i} } \right) \left( {N - n + 1} \right) }}{n} \\ \end{aligned}$$
(28)

3.2 Proposal Ratio

The proposal ratio can be decomposed as:

$$\frac{{q({\mathbf{m}},n|{\mathbf{m}}^{\prime } ,n^{\prime } )}}{{q({\mathbf{m}}^{\prime } ,n^{\prime } |{\mathbf{m}},n)}} = \frac{{q({\mathbf{z}}|{\mathbf{z}}^{\prime } ,n^{\prime } )}}{{q({\mathbf{z}}^{\prime } |{\mathbf{z}},n)}}\frac{{q({\mathbf{e}}|{\mathbf{e}}^{\prime } ,n^{\prime } )}}{{q({\mathbf{e}}^{\prime } |{\mathbf{e}},n)}} .$$
(29)

For a birth move the probability of generating new property values at the (n + 1)-th layer is:

$$q\left( {{\mathbf{e^{\prime}}}{|}{\mathbf{e}},n} \right) = \frac{1}{{\mathop \prod \nolimits_{i = 1}^{3} \sqrt {2\pi } \sigma_{{{\mathbf{e}}_{i} }}^{{}} }}{\exp}\left( { - \mathop \sum \limits_{i = 1}^{3} \frac{{\left( {{\mathbf{e}}_{i}^{\prime } - {\mathbf{e}}_{i} } \right)^{2} }}{{2\sigma_{{{\mathbf{e}}_{i} }}^{2} }}} \right).$$
(30)

where \(\sigma_{{{\mathbf{e}}_{i} }}^{{}}\) is the standard deviation for the proposal distribution for the i-th elastic property, and \({\mathbf{e}}_{i}\) is the i-th elastic property in the current model within the time interval associated to the new (n + 1)-th layer. The probability of the reverse step (removing the elastic properties when a layer is deleted) is:

$$q({\mathbf{e}}|{\mathbf{e^{\prime}}},n^{\prime } ) = 1.$$
(31)

The probability to generate the (n + 1)-th layer results:

$$p\left( {{\mathbf{z^{\prime}}}{|}{\mathbf{z}},n} \right) = \frac{1}{N - n}.$$
(32)

The probability of the reverse step in a birth move (deleting the layer positions) is:

$$p\left( {{\mathbf{z^{\prime}}}{|}n^{\prime}} \right) = \frac{1}{n + 1}.$$
(33)

By combining equations Eqs. 2932 for a birth step we found:

$$\frac{{q({\mathbf{m}},n|{\mathbf{m^{\prime}}},n^{\prime})}}{{q({\mathbf{m^{\prime}}},n^{\prime}|{\mathbf{m}},n)}} = \frac{{\left( {N - n} \right)\mathop \prod \nolimits_{i = 1}^{3} \sqrt {2\pi } \sigma_{{{\mathbf{e}}_{i} }}^{{}} }}{n + 1}{\exp}\left( {\mathop \sum \limits_{i = 1}^{3} \frac{{\left( {{\mathbf{e}}_{i}^{\prime } - {\mathbf{e}}_{i} } \right)^{2} }}{{2\sigma_{{{\mathbf{e}}_{i} }}^{2} }}} \right)$$
(34)

With similar mathematical derivation the proposal for the death move is:

$$\frac{{q({\mathbf{m}},n|{\mathbf{m^{\prime}}},n^{\prime})}}{{q({\mathbf{m^{\prime}}},n^{\prime}|{\mathbf{m}},n)}} = \frac{n}{{\left( {N - n + 1} \right)\mathop \prod \nolimits_{i = 1}^{3} \sqrt {2\pi } \sigma_{{{\mathbf{e}}_{i} }}^{{}} }}{\exp}\left( { - \mathop \sum \limits_{i = 1}^{3} \frac{{\left( {{\mathbf{e}}_{i}^{\prime } - {\mathbf{e}}_{i} } \right)^{2} }}{{2\sigma_{{{\mathbf{e}}_{i} }}^{2} }}} \right).$$
(35)

3.3 Acceptance Probability

By combining the prior ratio (Eq. 27), the proposal ratio (Eq. 35) and with the likelihood ratio (Eq. 25) for a birth move we get:

$$\left[ {p\left( {{\mathbf{m^{\prime}}},n^{\prime}{|}{\mathbf{m}},n} \right)} \right]_{birth} = \min \left[ {1,\frac{{\mathop \prod \nolimits_{i = 1}^{3} \sqrt {2\pi } \sigma_{{{\mathbf{e}}_{i} }}^{{}} }}{{\mathop \prod \nolimits_{i = 1}^{3} \Delta {\mathbf{e}}_{i} }}{\exp}\left( {\left( {\mathop \sum \limits_{i = 1}^{3} \frac{{\left( {{\mathbf{e}}_{i}^{\prime } - {\mathbf{e}}_{i} } \right)^{2} }}{{2\sigma_{{{\mathbf{e}}_{i} }}^{2} }}} \right) - \frac{{{{\varphi }}\left( {{\mathbf{m^{\prime}}},n} \right) - {{\varphi }}\left( {{\mathbf{m}},n} \right)}}{{2\sigma_{d}^{2} T}}} \right)} \right].$$
(36)

For a death move we obtain:

$$\left[ {p\left( {{\mathbf{m^{\prime}}},n^{\prime}{|}{\mathbf{m}},n} \right)} \right]_{death} = {\min}\left[ {1,\frac{{\mathop \prod \nolimits_{i = 1}^{3} \Delta {\mathbf{e}}_{i} }}{{\mathop \prod \nolimits_{i = 1}^{3} \sqrt {2\pi } \sigma_{{e_{i} }}^{{}} }}{\exp}\left( {\left( {\mathop \sum \limits_{i = 1}^{3} - \frac{{\left( {{\mathbf{e}}_{i}^{\prime } - {\mathbf{e}}_{i} } \right)^{2} }}{{2\sigma_{{{\mathbf{e}}_{i} }}^{2} }}} \right) - \frac{{{{\varphi }}\left( {{\mathbf{m^{\prime}}},n} \right) - {{\varphi }}\left( {{\mathbf{m}},n} \right)}}{{2\sigma_{d}^{2} T}}} \right)} \right].$$
(37)

After determining the acceptance probability, we draw a random number \(\alpha\) from the uniform distribution \(U\left( {0, 1} \right)\). If \(p\left( {{\mathbf{m^{\prime}}},n^{\prime}{|}{\mathbf{m}},n} \right) \ge \alpha\) then \(\left( {{\mathbf{m}},n} \right) = ({\mathbf{m}}^{^{\prime}} ,n)\user2{ }\) otherwise the current model is repeated in the chain and another perturbation is proposed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleardi, M., Salusti, A. Application of Reversible Jump Markov Chain Monte Carlo Algorithms to Elastic and Petrophysical Amplitude-Versus-Angle Inversions. Pure Appl. Geophys. 177, 3335–3359 (2020). https://doi.org/10.1007/s00024-020-02436-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-020-02436-w

Keywords

Navigation