Skip to main content

Advertisement

Log in

Photocatalytic Evaluation of the ZrO2:Zn5(OH)6(CO3)2 Composite for the H2 Production via Water Splitting

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The present work studies the effect of zirconium dioxide addition in hydrozincite (Zn5(OH6)(CO3)2). The composites samples shows an efficient photocatalytic activity for H2 production under UV light irradiation and employing methanol as a sacrificial reagent. The composites were synthesized in one-pot method, dried to 100 °C and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV–Vis diffuse reflectance spectroscopy (UV–Vis DRS), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), elemental mapping by SEM and transmission electron microscopy (TEM). The most active composite with 3 mol% of ZrO2 exhibited a H2 production of 1908 μmol g−1 h−1 and an apparent quantum yield (AQY) of 41%. The photoactivity is attributed to the formation of heterojunctions, it is confirmed by the characterization techniques. The heterojunctions result in a synergic effect, the hydrozincite provides a wide surface area for electron transfer while the zirconium dioxide inhibits the recombination through the photogenerated holes attraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. International Energy outlook (2019) Independent statistics and analysis [updated 18 Oct 2019]. https://www.eia.gov/outlooks/ieo/. Accessed 19 Nov 2019

  2. Stephens E, Ross I, Mussgnug J, Wagner L, Borowitzka M, Posten C et al (2010) Future prospects of microalgal biofuel production systems. Trends Plant Sci 15:554–564

    CAS  PubMed  Google Scholar 

  3. Capellán-Pérez I, Mediavilla M, de Castro C, Carpintero Ó, Miguel L (2014) Fossil fuel depletion and socio-economic scenarios: an integrated approach. Energy; in press.

  4. Martins F, Felgueiras C, Smitkova M, Caetano N (2019) Analysis of fossil fuel energy consumption and environmental impacts in European countries. Energies 12(6):964

    CAS  Google Scholar 

  5. Hordeski MF (2007) Alternative fuels: the future of hydrogen. Fairmont Press, Lilburn

    Google Scholar 

  6. Bičáková O, Straka P (2014) The resources and methods of hydrogen production. Acta Geodyn Geomater 7:175–188

    Google Scholar 

  7. Vignesh K, Imam M, Badreldin A, Chava RK, Do JY, Kang M et al (2019) Photocatalytic hydrogen production: role of sacrificial reagents on the activity of oxide, carbon, and sulfide catalysts. Catalysts 9:276

    Google Scholar 

  8. Jang JS, Park H (2014) Strategic design of heterojunction cds photocatalysts for solar hydrogen. In: Viswanathan B, Lee JS, Subramanian V (Eds) Materials and process for solar fuel production. Nanostructure science and technology. Springer, New York

    Google Scholar 

  9. Marepally BC, Ampelli C, Genovese C, Quadrelli EA, Perathoner S, Centi G (2019) Chapter 1—production of solar fuels using CO2. In: Albonetti S, Perathoner S, Quadrelli EA (eds) Studies in surface science and catalysis, vol 178. Elsevier, London, pp 7–30

    Google Scholar 

  10. Yang J, Wang D, Han H, Li C (2013) Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc Chem Res 46(8):1900–1909

    CAS  PubMed  Google Scholar 

  11. Sudha D, Sivakumar P (2015) Review on the photocatalytic activity of various composite catalysts. Chem Eng Process Process Intensif 97:112–133

    CAS  Google Scholar 

  12. Xia X, Song M, Wang H, Zhang X, Sui N, Zhang Q et al (2019) Latest progress in constructing solid-state Z scheme photocatalysts for water splitting. Nanoscale 11(23):11071–11082

    CAS  PubMed  Google Scholar 

  13. Vaiano V, Lara MA, Iervolino G, Matarangolo M, Navio JA, Hidalgo MC (2018) Photocatalytic H2 production from glycerol aqueous solutions over fluorinated Pt-TiO2 with high 001 facet exposure. J Photochem Photobiol A 365:52–59

    CAS  Google Scholar 

  14. Ismael M (2019) Highly effective ruthenium-doped TiO2 nanoparticles photocatalyst for visible-light-driven photocatalytic hydrogen production. New J Chem 43(24):9596–9605

    CAS  Google Scholar 

  15. Gil Zamorano JJ, Aguilar Martínez O, Piña-Pérez Y, Pérez-Hernández R, Santolalla Vargas C, R, Gomez et al (2019) Efficient ZnS-ZnO/ZnAl-LDH composite for H2 production by photocatalysis. Renew Energy 145:124

    Google Scholar 

  16. Piña-Pérez Y, Aguilar-Martínez O, Acevedo-Peña P, Santolalla-Vargas CE, Oros-Ruíz S, Galindo-Hernández F et al (2018) Novel ZnS-ZnO composite synthesized by the solvothermal method through the partial sulfidation of ZnO for H2 production without sacrificial agent. Appl Catal B 230:125–134

    Google Scholar 

  17. Mendoza-Damián G, Hernández-Gordillo A, Fernández-García ME, Acevedo-Peña P, Tzompantzi-Morales FJ, Pérez-Hernández R (2019) Influence of ZnS wurtzite–sphalerite junctions on ZnOCore-ZnS shell-1D photocatalysts for H2 production. Int J Hydrogen Energy 44(21):10528–10540

    Google Scholar 

  18. Aguilar O, Tzompantzi F, Pérez-Hernández R, Gómez R, Hernández-Gordillo A (2017) Novel preparation of ZnS from Zn5(CO3)2(OH)6 by the hydro- or solvothermal method for H2 production. Catal Today 287:91–98

    CAS  Google Scholar 

  19. Aguilar-Martínez O, Hernández-Gordillo A, Pérez-Hernández R, Acevedo-Peña P, Arrieta-Castañeda A, Gómez R et al (2017) Efficient ZnO1−xSx composites from the Zn5(CO3)2(OH)6 precursor for the H2 production by photocatalysis. Renew Energy 113:43–51

    Google Scholar 

  20. Sayama K, Arakawa H (1996) Effect of carbonate addition on the photocatalytic decomposition of liquid water over a ZrO2 catalyst. J Photochem Photobiol A 94(1):67–76

    CAS  Google Scholar 

  21. Sinhamahapatra A, Jeon J-P, Kang J, Han B, Yu J-S (2016) Oxygen-deficient zirconia (ZrO2−x): a new material for solar light absorption. Sci Rep 6:27218

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ismael M, Wu Y, Wark M (2019) Photocatalytic activity of ZrO2 composites with graphitic carbon nitride for hydrogen production under visible light. New J Chem 43(11):4455–4462

    CAS  Google Scholar 

  23. Quiroz-Cardoso O, Oros-Ruiz S, Solís-Gómez A, López R, Gómez R (2019) Enhanced photocatalytic hydrogen production by CdS nanofibers modified with graphene oxide and nickel nanoparticles under visible light. Fuel 237:227–235

    CAS  Google Scholar 

  24. Mancipe S, Tzompantzi F, Gómez R (2017) Synthesis of CdS/MgAl layered double hydroxides for hydrogen production from methanol–water decomposition. Appl Clay Sci 136:67–74

    CAS  Google Scholar 

  25. Iervolino G, Vaiano V, Sannino D, Rizzo L, Ciambelli P (2016) Photocatalytic conversion of glucose to H2 over LaFeO3 perovskite nanoparticles. Chem Eng Trans 47:283–288

    Google Scholar 

  26. Ismael M, Wark M (2019) Perovskite-type LaFeO3: photoelectrochemical properties and photocatalytic degradation of organic pollutants under visible light irradiation. Catalysts 9:342

    Google Scholar 

  27. Ismael M, Elhaddad E, Taffa D, Wark M (2017) Synthesis of phase pure hexagonal YFeO3 perovskite as efficient visible light active photocatalyst. Catalysts 7:326

    Google Scholar 

  28. Ismael M, Wu Y, Taffa DH, Bottke P, Wark M (2019) Graphitic carbon nitride synthesized by simple pyrolysis: role of precursor in photocatalytic hydrogen production. New J Chem 43(18):6909–6920

    CAS  Google Scholar 

  29. Mun S, Park S-J (2019) Graphitic carbon nitride materials for photocatalytic hydrogen production via water splitting: a short review. Catalysts 9:805

    CAS  Google Scholar 

  30. Basahel SN, Ali TT, Mokhtar M, Narasimharao K (2015) Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange. Nanoscale Res Lett 10:73

    PubMed  PubMed Central  Google Scholar 

  31. Wu Y, Zeng S, Dong Y, Fu Y, Sun H, Yin S et al (2018) Hydrogen production from methanol aqueous solution by ZnO/Zn(OH)2 macrostructure photocatalysts. RSC Adv 8(21):11395–11402

    CAS  Google Scholar 

  32. Paramo JA, Strzhemechny YM, Endo T, Orel ZC (2015) Correlation of defect-related optoelectronic properties in Zn5(OH)6(CO3)2/ZnO nanostructures with their quasi-fractal dimensionality. J Nanomater. https://doi.org/10.1155/2015/237985

    Article  Google Scholar 

  33. Alcaraz L, García-Díaz I, González L, Rabanal ME, Urbieta A, Fernández P et al (2019) New photocatalytic materials obtained from the recycling of alkaline and Zn/C spent batteries. J Mater Res Technol 8(3):2809–2818

    CAS  Google Scholar 

  34. Han Y-x, Ding Y-z, Yin W-z, Ma Z-x (2006) Preparation of homogeneous ZnO nanoparticles via precipitation-pyrolysis with Zn5(CO3)2(OH)6 as precursor. Trans Nonferrous Metals Soc China 16:1205–1212

    Google Scholar 

  35. Ghose S (1964) The crystal structure of hydrozincite, Zn5(OH)6(CO3)2. Acta Crystallogr 17(8):1051–1057

    CAS  Google Scholar 

  36. Liu Z, Teng F (2018) Understanding the correlation of crystal atoms with photochemistry property: Zn5(OH)6(CO3)2 vs. ZnCO3. ChemistrySelect 3:8886–8894

    CAS  Google Scholar 

  37. Cherepanova S, Markovskaya D, Kozlova E (2017) Identification of a deleterious phase in photocatalyst based on Cd1−xZnxS/Zn(OH)2 by simulated XRD patterns. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater. https://doi.org/10.1107/S2052520617001664

    Article  Google Scholar 

  38. Tzompantzi-Flores C, Castillo-Rodríguez JC, Gómez R, Tzompantzi F, Pérez-Hernández R, De la Luz TV et al (2019) Synthesis and characterization of ZnZr composites for the photocatalytic degradation of phenolic molecules: addition effect of ZrO2 over hydrozincite Zn5(OH)6(CO3)2. J Chem Technol Biotechnol 94(11):3428–3439

    CAS  Google Scholar 

  39. Capper SKP (2017) Handbook of electronic and photonic materials, 2nd edn. Springer, New York

    Google Scholar 

  40. Taha K, Zoman M, Outeibi M, Alhussain S, Modwi A, Bagabas A (2019) Green and sonogreen synthesis of zinc oxide nanoparticles for the photocatalytic degradation of methylene blue in water. Nanotechnol Environ Eng. https://doi.org/10.1007/s41204-019-0057-3

    Article  Google Scholar 

  41. Bhattacharya A, Gupta R, Kahol P, Ghosh K (2010) Electrical properties of rectifying contacts on selectively carrier controlled grown ZnO thin films. J Appl Phys 108:34514

    Google Scholar 

  42. López R, Gomez R (2011) Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J Sol-Gel Sci Technol 61:1–7

    Google Scholar 

  43. López TM, Avnir D, Aegerter MA (2003) Emerging fields in sol–gel science and technology. Springer, New York, p 454

    Google Scholar 

  44. Chang S-m, Doong R-a (2007) Interband transitions in sol−gel-derived ZrO2 films under different calcination conditions. Chem Mater 19(19):4804–4810

    CAS  Google Scholar 

  45. Turianicová E, Kaňuchová M, Zorkovská A, Holub M, Bujňáková Z, Dutková E et al (2016) CO2 utilization for fast preparation of nanocrystalline hydrozincite. J CO Util 16:328–335

    Google Scholar 

  46. Liu Z, Teng F (2018) Understanding the correlation of crystal atoms with photochemistry property: Zn5(OH)6(CO3)2 vs. ZnCO3. ChemistrySelect 3(31):8886–8894

    CAS  Google Scholar 

  47. Cherepanova S, Markovskaya D, Kozlova E (2017) Identification of a deleterious phase in photocatalyst based on Cd1−xZnxS/Zn(OH)2 by simulated XRD patterns. Acta Crystallogr Sect B 73(3):360–368

    CAS  Google Scholar 

  48. Hales MC, Frost RL (2007) Synthesis and vibrational spectroscopic characterisation of synthetic hydrozincite and smithsonite. Polyhedron 26(17):4955–4962

    CAS  Google Scholar 

  49. Wahab R, Ansari SG, Kim YS, Dar MA, Shin H-S (2008) Synthesis and characterization of hydrozincite and its conversion into zinc oxide nanoparticles. J Alloys Compd 461(1):66–71

    CAS  Google Scholar 

  50. Tessier C, Guerlou-Demourgues L, Faure C, Demourgues A, Delmas C (2000) Structural study of zinc-substituted nickel hydroxides. J Mater Chem 10(5):1185–1193

    CAS  Google Scholar 

  51. Hadia NM, Garcia-Granda S, Garcia JR (2014) Effect of the temperature on structural and optical properties of zinc oxide nanoparticles. J Nanosci Nanotechnol 14(7):5443–5448

    CAS  PubMed  Google Scholar 

  52. Gurushantha K, Anantharaju KS, Renuka L, Sharma SC, Nagaswarupa HP, Prashantha SC et al (2017) New green synthesized reduced graphene oxide–ZrO2 composite as high performance photocatalyst under sunlight. RSC Adv 7(21):12690–12703

    CAS  Google Scholar 

  53. Pradeev raj K, Sadaiyandi K, Kennedy A, Sagadevan S, Chowdhury ZZ, Johan MRB et al (2018) Influence of Mg doping on ZnO nanoparticles for enhanced photocatalytic evaluation and antibacterial analysis. Nanoscale Res Lett 13(1):229

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Nassar M, Mahmoud M, Taha M (2016) A hydrothermal tuning of the morphology and particle size of hydrozincite nanoparticles using different counter ions to produce nano-sized ZnO as an efficient adsorbent for textile dye removal. RSC Adv 6:48

  55. Giri A, Sinhamahapatra A, Prakash SP, Chaudhari J, V, Shahi, A, Panda (2012) Porous ZnO microtubes with excellent cholesterol sensing and catalytic properties. J Mater Chem A 4:817–825

    Google Scholar 

  56. Ahmed M, Rady K, El-Shokrofy K, Arais A, Shams M (2014) The influence of Zn2+ ions substitution on the microstructure and transport properties of Mn–Zn nanoferrites. Mater Scie Appl 5:932–942

    CAS  Google Scholar 

  57. He X, Yan B (2015) High-energy organic groups induced spectrally pure upconversion emission in novel zirconate-/hafnate-based nanocrystals. CrystEngComm. https://doi.org/10.1039/C5CE01195G

    Article  Google Scholar 

  58. Yan C, Xue D (2006) Morphosynthesis of hierarchical hydrozincite with tunable surface architectures and hollow zinc oxide. J Phys Chem B 110(23):11076–11080

    CAS  PubMed  Google Scholar 

  59. Tolod KR, Hernández S, Quadrelli EA, Russo N (2019) Chapter 4—visible light-driven catalysts for water oxidation: towards solar fuel biorefineries. In: Albonetti S, Perathoner S, Quadrelli EA (eds) Studies in surface science and catalysis, vol 178. New York, Elsevier, pp 65–84

    Google Scholar 

  60. Guzman F, Chuang SSC, Yang C (2013) Role of methanol sacrificing reagent in the photocatalytic evolution of hydrogen. Ind Eng Chem Res 52(1):61–65

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like thank to CONACyT for the support through the projects CB-2015–01 256410 and CONACyT-SENER 226151, as well as to the financial support from Instituto Politecnico Nacional (Proyecto SIP 20201116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Tzompantzi-Flores.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 811 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tzompantzi-Flores, C., Castillo-Rodríguez, J.C., Gómez, R. et al. Photocatalytic Evaluation of the ZrO2:Zn5(OH)6(CO3)2 Composite for the H2 Production via Water Splitting. Top Catal 63, 575–585 (2020). https://doi.org/10.1007/s11244-020-01236-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01236-9

Keywords

Navigation