Skip to main content
Log in

The Pulsed Periodic Discharge in Mixtures of Ar with Sulfur Vapour

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The discharge in mixtures of inert gas with sulfur vapors is an effective source of radiation spectrum, which is similar to solar in the wavelength range of 280–600 nm due to strong emission of S2 molecules (\( B{}^{3}\varSigma \to X{}^{3}\varSigma \)-transition). This phenomenon is utilized in microwave sulfur lamp. Despite a number of advantages microwave sulfur lamps have disadvantages that prevent their widespread use. This paper presents optical properties of the pulsed-periodic discharge in mixtures of argon with sulfur vapour in UV and visible spectral region and a global model of the discharge. Emission of the pulsed-periodic discharge in argon–sulfur vapour mixtures was studied at argon pressure up to 100 Torr and pressure of sulfur saturated vapors determined by temperature of gas-discharge tube walls varied due self-heating from the room temperature up to 160 °C. It is shown that strong band of S2 molecules are observed in the discharge emission in the wavelength range of 300–600 nm and S and Ar lines are predominate in the wavelength range of 600–1000 nm. Effect of the discharge conditions on emission spectra was investigated. Time profiles of plasma species densities under various Ar–S2 mixture compositions and voltage pulse up to 15 kV with duration ~ 10 μs were calculated using the global model. It is shown, that densities of S2* molecules fast increases at the voltage pulse beginning and reach maximum after ~ 2 μs, so strong radiation of S2* is characteristic for the time interval, then S2* density fast decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ricard A, Sarrette JP (2019) Densities of active species in R/x%(N2–5%H2) (R = Ar or He) microwave flowing afterglows. PCPP 39:1103–1114

    CAS  Google Scholar 

  2. Yanez-Pacios AJ, Martin-Martinez JM (2018) Improved surface and adhesion properties of wood-polyethylene composite by treatment with argon-oxygen low pressure plasma. PCPP 38:871–886

    CAS  Google Scholar 

  3. Malik MA, Hughes D, Malik A, Xiao S, Schoenbach KH (2013) Study of the production of hydrogen and light hydrocarbons by spark discharges in diesel, kerosene, gasoline, and methane. PCPP 33:271–279

    CAS  Google Scholar 

  4. Su X, Feng M, Rogers S, Holsen TM, Mededovic Thagard S (2019) The role of high voltage electrode material in the inactivation of E. coli by direct-in-liquid electrical discharge plasma. PCPP 39:577–596

    CAS  Google Scholar 

  5. Barjasteh A, Eslami E (2018) Numerical investigation of effect of driving voltage pulse on low pressure 90%Ar–10%Cl2 dielectric barrier discharge. PCPP 38:261–279

    CAS  Google Scholar 

  6. Baeva M, Reiter D (2003) Monte Carlo simulation of radiation trapping in Hg–Ar fluorescent discharge lamps. PCPP 23:371–387

    CAS  Google Scholar 

  7. Zissis G, Kitsinelis S (2009) State of art on the science and technology of electrical light sources: from the past to the future. Topical review. J Phys D Appl Phys 42:173001

    Article  CAS  Google Scholar 

  8. Malkov M (2011) Sulfur lamp. A promising start and… an unpredictable future? Part I. A bit of history and about the lamp device. Sovremennaya Svetotekhnika (Modern Lighting) 3:69–72

    Google Scholar 

  9. Malkov M (2011) Sulfur lamp. A promising start and… an unpredictable future? Part II. A little about the physics of sulfur discharge. Sovremennaya Svetotekhnika (Modern Lighting) 4:53–58

    Google Scholar 

  10. Malkov M (2011) Sulfur lamp. A promising start and… an unpredictable future? Part III. Technical characteristics of lamps and light distribution systems. Sovremennaya Svetotekhnika (Modern Lighting) 5:69–72

    Google Scholar 

  11. Műller P, Klán P, Církva V (2005) The electrodeless discharge lamp: a prospective tool for photochemistry Part 5: fill material-dependent emission characteristics. J Photochem Photobiol, A 171:51–57

    Article  CAS  Google Scholar 

  12. https://en.wikipedia.org/wiki/Sulfur_lamp

  13. Dolan JT, Ury MG, Wood CH (1992) Novel high efficacy microwave powered light source. VIth Intern Sym on the Science and Technology of Light Sources. Tech University Budapest (Lighting Sciences 6), pp 301–302

  14. Long-life “super lamp” mimics bright sunlight (1994) Elec Rev 22:18

  15. Childs AH, Schrenk WG (1976) Some characteristics of low pressure, sulfer, microwave-excited, electrodeless discharge lamps. Appl Spectrosc 30:507–509

    Article  CAS  Google Scholar 

  16. Turner BP, Ury MG, Leng Y, Love WG (1997) Sulfur lamps - progress in their development. J Illum Eng Soc 26:10–16

    Article  CAS  Google Scholar 

  17. Krizek DT, Mirecki RM, Britz SJ, Harris WG, Thimijan RW (1998) Spectral properties of microwave-powered sulfur lamps in comparison to sunlight and high pressure sodium/metal halide lamps. Biotronics 27:69–80

    Google Scholar 

  18. Chen Y, Chen D (2006) Study the buffer gas for microwave sulfur lamp. In: Conf record of the 2006 IEEE industry applications conf forty-first IAS annual meeting. Tampa, FL, USA. https://doi.org/10.1109/ias.2006.256746

  19. Aleksandrova OYu, Bondarenko SM, Guttsayt EM, Zhidkov RA (2013) Plasma lighting devices based on microwave discharge. T-Comm Telecommun Transp 9:9–11

    Google Scholar 

  20. Johnston CW (2003) Transport and equilibrium in molecular plasmas: the sulfur lamp. PhD Thesis: Technische Universität Eidhoven

  21. Van der Heijden HWP (2003) Modelling of radiative transfer in light sources. PhD Thesis: Technische Universität Eidhoven

  22. Van der Heijden H, Van der Mullen J, Baier J, Körber A (2002) Radiative transfer of a molecular S2 B-X spectrum using semiclassical and quantum-mechanical radiation coefficients. J Phys B: At Mol Opt Phys 35:3633–3654

    Article  Google Scholar 

  23. Johnston CW, Van der Heijden HWP, Janssen GM, Van Dijk J, Van der Mullen JJAM (2002) A self-consistent LTE model of a microwave-driven, high-pressure sulfur lamp. J Phys D Appl Phys 35:342–351

    Article  CAS  Google Scholar 

  24. Heneral AA, Avtaeva SV (2017) Emission characteristics of plasma based on xenon-rubidium bromide mixture. Opt Spectrosc 123:531–534

    Article  CAS  Google Scholar 

  25. Heneral AA, Avtaeva SV (2017) Emission characteristics of Xe–RbBr plasma. J Phys D Appl Phys 50:495202

    Article  CAS  Google Scholar 

  26. Heneral AA, Zhmenyak YV (2018) Luminescent characteristics of a pulsed discharge plasma in Xe–KBr mixture. J Appl Spectrosc 85:79–83

    Article  CAS  Google Scholar 

  27. Avtaeva SV, General AA, Kel’man VA (2010) Kinetic model for low-density non-stationary gas discharge in water vapour. J Phys D Appl Phys 43:315201

    Article  CAS  Google Scholar 

  28. Shuaibov AK, Heneral AA, Shpenik YuO, Zhmenyak YuV, Shevera IV, Gritsak RV (2009) Ultraviolet radiation sources on (H2O, D2O) water vapor. Tech Phys 54:1238–1240

    Article  CAS  Google Scholar 

  29. General AA, Kelman VA, Zhmenyak YuV, Zvenigorodsky VV (2016) Optical radiation of a gas discharge in argon–sulfur mixture. J Appl Spectrosc 83:598–602

    Article  CAS  Google Scholar 

  30. Kikoin IK (ed) (1976) Tables of physical quantities. Handbook (p 201). Atomizdat, Moscow

    Google Scholar 

  31. Zavilopulo AN, Shpenik OB, Markush PP, Mykyta MI (2014) Tech Phys Lett 40:13–17

    Article  CAS  Google Scholar 

  32. Avtaeva SV, Avdeev SM, Sosnin EA (2010) Radiation of nitrogen molecules in a dielectric barrier discharge with small additives of chlorine and bromine. Plasma Phys Rep 36:719–728

    Article  CAS  Google Scholar 

  33. Rau H, Kutty TRN, Guedes de Carvalho JRF (1973) Thermodynamics of sulphur vapour. J Chem Thermodyn 5:833–844

    Article  CAS  Google Scholar 

  34. Ferreira AGM, Lobo LQ (2011) The low-pressure phase diagram of sulfur. J Chem Thermodyn 43:95–104

    Article  CAS  Google Scholar 

  35. PHELPS database http://www.lxcat.laplace.univ-tlse.fr

  36. Tashiro M (2008) Exchange effects in elastic collisions of spin-polarized electrons with open-shell molecules with 3Σ g symmetry. Phys Rev A 77:012723

    Article  CAS  Google Scholar 

  37. Johnson TH, Cartland HE, Genoni TC et al (1989) A comprehensive kinetic model of the electron-beam-excited xenon chloride laser. J Appl Phys 66:5707–5725

    Article  CAS  Google Scholar 

  38. Bassett NL, Economou DJ (1994) Effect of Cl2 additions to an argon glow discharge. J Appl Phys 75:1931–1939

    Article  CAS  Google Scholar 

  39. Klucharev N, Vujnovid V (1990) Chemi-ionization in thermal-energy binary collisions of optically excited atoms. Phys Rep 185:55–81

    Article  CAS  Google Scholar 

  40. Moravej M, Yang X, Barankin M, Penelon J, Babayan SE, Hicks (2006) RF properties of an atmospheric pressure radio-frequency argon and nitrogen plasma. Plasma Sources Sci Technol 1(5):204–210

    Article  CAS  Google Scholar 

  41. Dyatko NA, Ionikh YZ, Kochetov IV, Marinov DL, Meshchanov AV, Napartovich AP, Petrov FB, Starostin SA (2008) Experimental and theoretical study of the transition between diffuse and contracted forms of the glow discharge in argon. J Phys D Appl Phys 41:055204

    Article  CAS  Google Scholar 

  42. Tashiro M (2008) Electron impact excitations of S2 molecules. Chem Phys Lett 453:145–149

    Article  CAS  Google Scholar 

  43. Freund RS, Wetzel RC, Shul RJ (1990) Measurements of electron-impact- ionization cross sections of N2, CO, CO2, CS, S2, CS2, and metastable N2. Phys Rev A 41:5861–5868

    Article  CAS  PubMed  Google Scholar 

  44. Coat YL, Bouby L, Guillotin JP, Ziesel JP (1996) Negative ion formation by electron attachment in S2 and in the sulphur vapour. J Phys B: At Mol Opt Phys 29:545–553

    Article  Google Scholar 

  45. Chernii GG, Losev SA (eds) (1995) Physico-chemical processes in gas dynamics. Vol 1 Dynamics of physic-chemical processes in gas and plasma. Moscow University Publishing, Moscow

  46. Zatsarinny O, Tayal SS (2002) Electron impact collision strengths and rates for neutral sulphur using the B-spline R-matrix approach. J Phys B: At Mol Opt Phys 35:2493–2503

    Article  CAS  Google Scholar 

  47. Eletskiy AV, Smirnov BM (2000) Elementary processes in plasma. In: Fortov VE (ed) Encyclopedia of low-temperature plasma. Introductory, vol 1. Nauka, Moscow

    Google Scholar 

  48. Tinck S, Boullart W, Bogaerts A (2011) Modeling Cl2/O2/Ar inductively coupled plasmas used for silicon etching: effects of SiO2 chamber wall coating. Plasma Sources Sci Technol 20:045012

    Article  CAS  Google Scholar 

  49. Kuznetsova LA, Kuzmenko NE, KuzyakovYuYa, PlastininYuA (1980) Transition probabilities of diatomic molecules. In: Khokhlov RV (ed) Moscow: Nauka

  50. Radtsig AA, Smirnov BM (1978) Hand-book on atomic and molecular physics. Atomizdat, Moscow

    Google Scholar 

  51. Hagelaar GJM, Pitchford LC (2005) Solving the Boltzmann equation in the two-term approximation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Sci Technol 14:722–733

    Article  CAS  Google Scholar 

  52. Brotton SJ, McConkey JW (2011) Electron-impact dissociative excitation of S2. J Phys B: At Mol Opt Phys 44:215202

    Article  CAS  Google Scholar 

  53. Yamabe C, Buckman SJ, Phelps AV (1983) Measurement of free-free emission from low-energy-electron collisions with Ar. Phys Rev A 27:1345–1352

    Article  CAS  Google Scholar 

  54. Brown PN, Byrne GD, Hindmarsh AC (1989) VODE: a variable-coefficient ODE solver. SIAM J. Sci. Stat. Comput 10(5):1038–1051

    Article  Google Scholar 

  55. Lieberman MA, Lichtenberg AJ (1994) Principles of plasma discharges and materials processing. Wiley, New York

    Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Profs. V. A. Kelman and Yu. V. Zhmenyak for help in performing the experiments, advices and useful scientific discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Avtaeva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avtaeva, S.V., Heneral, A.A. The Pulsed Periodic Discharge in Mixtures of Ar with Sulfur Vapour. Plasma Chem Plasma Process 40, 839–855 (2020). https://doi.org/10.1007/s11090-020-10067-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-020-10067-1

Keywords

Navigation