Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genomic profiling of intestinal T-cell receptor repertoires in inflammatory bowel disease

Abstract

Growing evidence shows that inflammatory bowel disease (IBD) results from dysregulation of immune responses to gut microbes. T-cell receptors (TCRs) expressed on the T-cell surface play critical roles in discriminating pathogens from commensal intestinal microorganisms at the front line of the adaptive immune system. The breakdown of this interaction may trigger persistent inflammatory responses to gut bacteria, resulting in IBD. Taking advantage of high-throughput sequencing, we developed an integrated approach to dissect the intestinal TCR repertoires underlying IBD by collecting peripheral blood and inflamed intestine from the same set of 11 IBD cases. The intestinal TCR repertoires show lower clonotype diversity (p < 0.05) and stronger clonal expansion (p < 0.02) than those in the blood. This pattern becomes more profound in TCRs unique to the inflamed tissue compared with shared TCRs. Our approach further identified the increased usage of TRAV12-3 (false discovery rate, FDR < 5%), which biases its choices of J genes towards the reduction of TRAJ37 and TRAJ43 usage (FDR < 20%) in the inflamed intestine. Our genomic profiling suggests that this selective bias of V and J gene usage may lead to a loss of diversity in the intestinal TCR repertoires and result in mucosal inflammation in IBD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of the diversity in TCR repertoires between blood and inflamed intestinal tissue.
Fig. 2: Proportion of TCR-α or TCR-β clonotypes assigned into four different classes in the blood (transparent colors) and the inflamed tissue (solid colors).
Fig. 3: Clonality scores of TCR-α and TCR-β chains across the four different classes of TCR clonotypes.
Fig. 4: Comparison of gene usage between inflamed tissue and blood in the Uni-Pri class.

Similar content being viewed by others

References

  1. Molodecky NA, Soon IS, Rabi DM, Ghali WA, Ferris M, Chernoff G, et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology. 2012;142:46–54.e42. quiz e30

    Article  PubMed  Google Scholar 

  2. Liu JZ, van Sommeren S, Huang H, Ng SC, Alberts R, Takahashi A, et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet. 2015;47:979–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491:119–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cleynen I, Boucher G, Jostins L, Schumm LP, Zeissig S, Ahmad T, et al. Inherited determinants of Crohn’s disease and ulcerative colitis phenotypes: a genetic association study. Lancet. 2016;387:156–67.

    Article  PubMed  PubMed Central  Google Scholar 

  5. de Lange KM, Moutsianas L, Lee JC, Lamb CA, Luo Y, Kennedy NA, et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat Genet. 2017;49:256–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Huang H, Fang M, Jostins L, Umićević Mirkov M, Boucher G, Anderson CA, et al. Fine-mapping inflammatory bowel disease loci to single-variant resolution. Nature. 2017;547:173–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Luo Y, de Lange KM, Jostins L, Moutsianas L, Randall J, Kennedy NA, et al. Exploring the genetic architecture of inflammatory bowel disease by whole-genome sequencing identifies association at ADCY7. Nat Genet. 2017;49:186–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen G-B, Lee SH, Brion M-JA, Montgomery GW, Wray NR, Radford-Smith GL, et al. Estimation and partitioning of (co)heritability of inflammatory bowel disease from GWAS and immunochip data. Hum Mol Genet. 2014;23:4710–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee YK, Mazmanian SK. Has the microbiota played a critical role in the evolution of the adaptive immune system? Science. 2010;330:1768–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gevers D, Kugathasan S, Denson LA, Vázquez-Baeza Y, Van Treuren W, Ren B, et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe. 2014;15:382–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology. 2014;146:1489–99.

    Article  CAS  PubMed  Google Scholar 

  12. Said HS, Suda W, Nakagome S, Chinen H, Oshima K, Kim S, et al. Dysbiosis of salivary microbiota in inflammatory bowel disease and its association with oral immunological biomarkers. DNA Res. 2014;21:15–25.

    Article  CAS  PubMed  Google Scholar 

  13. Wlodarska M, Kostic AD, Xavier RJ. An integrative view of microbiome-host interactions in inflammatory bowel diseases. Cell Host Microbe. 2015;17:577–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature. 2011;474:307–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fischbach MA, Segre JA. Signaling in host-associated microbial communities. Cell. 2016;164:1288–1300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nakagome S, Chinen H, Iraha A, Hokama A, Takeyama Y, Sakisaka S, et al. Confounding effects of microbiome on the susceptibility of TNFSF15 to Crohn’s disease in the Ryukyu Islands. Hum Genet. 2017;136:387–97.

    Article  CAS  PubMed  Google Scholar 

  17. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9:313–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hooper LV, Macpherson AJ. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol. 2010;10:159–69.

    Article  CAS  PubMed  Google Scholar 

  19. Gutierrez-Arcelus M, Rich SS, Raychaudhuri S. Autoimmune diseases—connecting risk alleles with molecular traits of the immune system. Nat Rev Genet. 2016;17:160–74.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Honda K, Littman DR. The microbiota in adaptive immune homeostasis and disease. Nature. 2016;535:75–84.

    Article  CAS  PubMed  Google Scholar 

  21. Cauley LS, Lefrançois L. Guarding the perimeter: protection of the mucosa by tissue-resident memory T cells. Mucosal Immunol. 2013;6:14–23.

    Article  CAS  PubMed  Google Scholar 

  22. Chakraborty AK, Weiss A. Insights into the initiation of TCR signaling. Nat Immunol. 2014;15:798–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schatz DG, Swanson PC. V(D)J recombination: mechanisms of initiation. Annu Rev Genet. 2011;45:167–202.

    Article  CAS  PubMed  Google Scholar 

  24. Blattman JN, Antia R, Sourdive DJD, Wang X, Kaech SM, Murali-Krishna K, et al. Estimating the precursor frequency of naive antigen-specific CD8 T cells. J Exp Med. 2002;195:657–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Whitmire JK, Benning N, Whitton JL. Precursor frequency, nonlinear proliferation, and functional maturation of virus-specific CD4+ T cells. J Immunol. 2006;176:3028–36.

    Article  CAS  PubMed  Google Scholar 

  26. Kaech SM, Tan JT, Wherry EJ, Konieczny BT, Surh CD, Ahmed R. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat Immunol. 2003;4:1191–8.

    Article  CAS  PubMed  Google Scholar 

  27. Kaech SM, Wherry EJ. Heterogeneity and cell-fate decisions in effector and memory CD8+ T cell differentiation during viral infection. Immunity. 2007;27:393–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Williams MA, Bevan MJ. Effector and memory CTL differentiation. Annu Rev Immunol. 2007;25:171–92.

    Article  CAS  PubMed  Google Scholar 

  29. Belz GT, Kallies A. Effector and memory CD8+ T cell differentiation: toward a molecular understanding of fate determination. Curr Opin Immunol. 2010;22:279–85.

    Article  CAS  PubMed  Google Scholar 

  30. Mombaerts P, Mizoguchi E, Grusby MJ, Glimcher LH, Bhan AK, Tonegawa S. Spontaneous development of inflammatory bowel disease in T cell receptor mutant mice. Cell. 1993;75:274–82.

    Article  CAS  PubMed  Google Scholar 

  31. Shalon L, Gulwani-Akolkar B, Fisher SE, Akolkar PN, Panja A, Mayer L, et al. Evidence for an altered T-cell receptor repertoire in Crohn’s disease. Autoimmunity. 1994;17:301–7.

    Article  CAS  PubMed  Google Scholar 

  32. Chott A, Probert CS, Gross GG, Blumberg RS, Balk SP. A common TCR beta-chain expressed by CD8+ intestinal mucosa T cells in ulcerative colitis. J Immunol. 1996;156:3024–35.

    CAS  PubMed  Google Scholar 

  33. Saubermann LJ, Probert CSJ, Christ AD, Chott A, Turner JR, Stevens AC, et al. Evidence of T cell receptor β-chain patterns in inflammatory and noninflammatory bowel disease states. Am J Physiol. 1999;276:G613–G621.

    CAS  PubMed  Google Scholar 

  34. Probert CS, Chott A, Saubermann LJ, Stevens AC, Balk SP, Blumberg RS. Prevalence of an ulcerative colitis-associated CD8+ T cell receptor β-chain CDR3-region motif and its association with disease activity1. J Clin Immunol. 2001;21:126–34.

    Article  CAS  PubMed  Google Scholar 

  35. Probert CSJ, Saubermann LJ, Balk S, Blumberg RS. Repertoire of the αβ T-cell receptor in the intestine. Immunol Rev. 2007;215:215–25.

    Article  CAS  PubMed  Google Scholar 

  36. Shiobara N, Suzuki Y, Aoki H, Gotoh A. Bacterial superantigens and T cell receptor β‐chain‐bearing T cells in the immunopathogenesis of ulcerative colitis. Clin Exp Immunol. 2007;150:13–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lord J, Chen J, Thirlby RC, Sherwood AM, Carlson CS. T-cell receptor sequencing reveals the clonal diversity and overlap of colonic effector and FOXP3+ T cells in ulcerative colitis. Inflamm Bowel Dis. 2015;21:19–30.

    Article  PubMed  Google Scholar 

  38. Rosati E, Dowds CM, Liaskou E, Henriksen EKK, Karlsen TH, Franke A. Overview of methodologies for T-cell receptor repertoire analysis. BMC Biotechnol. 2017;17:61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Ichinohe T, Miyama T, Kawase T, Honjo Y, Kitaura K, Sato H, et al. Next-generation immune repertoire sequencing as a clue to elucidate the landscape of immune modulation by host–gut microbiome interactions. Front Immunol. 2018;9:28.

    Article  CAS  Google Scholar 

  40. Bradley P, Thomas PG. Using T cell receptor repertoires to understand the principles of adaptive immune recognition. Annu Rev Immunol. 2019;37:547–70.

    Article  CAS  PubMed  Google Scholar 

  41. Zeissig S, Rosati E, Dowds CM, Aden K, Bethge J, Schulte B, et al. Vedolizumab is associated with changes in innate rather than adaptive immunity in patients with inflammatory bowel disease. Gut. 2019;68:25–39.

    Article  CAS  PubMed  Google Scholar 

  42. Allez M, Auzolle C, Ngollo M, Bottois H, Chardiny V, Corraliza AM, et al. T cell clonal expansions in ileal Crohn’s disease are associated with smoking behaviour and postoperative recurrence. Gut 2019;68:1961–70.

    Article  PubMed  Google Scholar 

  43. Wu J, Pendegraft AH, Byrne-Steele M, Yang Q, Wang C, Pan W, et al. Expanded TCRβ CDR3 clonotypes distinguish Crohn’s disease and ulcerative colitis patients. Mucosal Immunol. 2018. https://doi.org/10.1038/s41385-018-0046-z

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rosati E, Pogorelyy MV, Dowds CM, Moller FT, Sorensen SB, Lebedev YB, et al. Identification of disease-associated traits and clonotypes in the T-cell receptor repertoire of monozygotic twins affected by inflammatory bowel diseases. J Crohns Colitis. 2019. https://doi.org/10.1093/ecco-jcc/jjz179

    Article  PubMed Central  Google Scholar 

  45. Chapman CG, Yamaguchi R, Tamura K, Weidner J, Imoto S, Kwon J, et al. Characterization of T-cell receptor repertoire in inflamed tissues of patients with crohn’s disease through deep sequencing. Inflamm Bowel Dis. 2016;22:1275–85.

    Article  PubMed  Google Scholar 

  46. Doorenspleet ME, Westera L, Peters CP, Hakvoort TBM, Esveldt RE, Vogels E, et al. Profoundly expanded T-cell clones in the inflamed and uninflamed intestine of patients with Crohn’s disease. J Crohns Colitis. 2017;11:831–9.

    Article  CAS  PubMed  Google Scholar 

  47. Henriksen EKK, Jørgensen KK, Kaveh F, Holm K, Hamm D, Olweus J, et al. Gut and liver T-cells of common clonal origin in primary sclerosing cholangitis-inflammatory bowel disease. J Hepatol. 2017;66:116–22.

    Article  CAS  PubMed  Google Scholar 

  48. Klonowski KD, Williams KJ, Marzo AL, Blair DA, Lingenheld EG, Lefrançois L. Dynamics of blood-borne CD8 memory T cell migration in vivo. Immunity. 2004;20:551–62.

    Article  CAS  PubMed  Google Scholar 

  49. Serriari N-E,-E, Serriari N, Eoche M, Lamotte L, Lion J, Fumery M, et al. Innate mucosal-associated invariant T (MAIT) cells are activated in inflammatory bowel diseases. Clin Exp Immunol. 2014;176:266–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Haga K, Chiba A, Shibuya T, Osada T, Ishikawa D, Kodani T, et al. MAIT cells are activated and accumulated in the inflamed mucosa of ulcerative colitis. J Gastroenterol Hepatol. 2016;31:965–72.

    Article  CAS  PubMed  Google Scholar 

  51. Hegazy AN, West NR, Stubbington MJT, Wendt E, Suijker KIM, Datsi A, et al. Circulating and tissue-resident CD4+ T cells with reactivity to intestinal microbiota are abundant in healthy individuals and function is altered during inflammation. Gastroenterology. 2017;153:1320–.e16.

    Article  CAS  PubMed  Google Scholar 

  52. Bolotin DA, Poslavsky S, Mitrophanov I, Shugay M, Mamedov IZ, Putintseva EV, et al. MiXCR: software for comprehensive adaptive immunity profiling. Nat Methods. 2015;12:380–1.

    Article  CAS  PubMed  Google Scholar 

  53. Bolotin DA, Poslavsky S, Davydov AN, Frenkel FE, Fanchi L, Zolotareva OI, et al. Antigen receptor repertoire profiling from RNA-seq data. Nat Biotechnol. 2017;35:908–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shugay M, Bagaev DV, Turchaninova MA, Bolotin DA, Britanova OV, Putintseva EV, et al. VDJtools: unifying Post-analysis of T Cell Receptor Repertoires. PLoS Comput Biol. 2015;11:e1004503.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Hou D, Ying T, Wang L, Chen C, Lu S, Wang Q, et al. Immune repertoire diversity correlated with mortality in avian influenza A (H7N9) virus infected patients. Sci Rep. 2016;6:33843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kirsch I, Vignali M, Robins H. T-cell receptor profiling in cancer. Mol Oncol. 2015;9:2063–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sharon E, Sibener LV, Battle A, Fraser HB, Garcia KC, Pritchard JK. Genetic variation in MHC proteins is associated with T cell receptor expression biases. Nat Genet. 2016;48:995–1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wagih O. ggseqlogo: a versatile R package for drawing sequence logos. Bioinformatics. 2017;33:3645–7.

    Article  CAS  PubMed  Google Scholar 

  59. Belkaid Y, Harrison OJ. Homeostatic immunity and the microbiota. Immunity. 2017;46:562–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We sincerely thank all IBD patients who participated in this study. We would like to thank the M.Sc. Molecular Medicine course, School of Medicine, Trinity College Dublin, for the encouragement and the partial financial support. This study was supported by grants from institutional supports that include Wellcome Trust Institutional Strategic Support Fund to Trinity College Dublin, Trinity Translational Medicine Institute Collaborative Pilot Study Awards, and Dean’s Research Initiatives Fund 2016–17.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeki Nakagome.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saravanarajan, K., Douglas, A.R., Ismail, M.S. et al. Genomic profiling of intestinal T-cell receptor repertoires in inflammatory bowel disease. Genes Immun 21, 109–118 (2020). https://doi.org/10.1038/s41435-020-0092-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41435-020-0092-x

Search

Quick links