Skip to main content
Log in

Topographically Predicted Vertical Gravity Gradient Field and Its Applicability in 3D and 4D Microgravimetry: Etna (Italy) Case Study

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Some geophysical or geodynamic applications require the use of true vertical gradient of gravity (VGG). This demand may be associated with reductions of or corrections to observed gravity or its spatiotemporal changes. In the absence of in situ measured VGG values, the constant value of the theoretical (normal) free air gradient (FAG) is commonly used. We propose an alternative to this practice which may significantly reduce systematic errors associated with the use of constant FAG. The true VGG appears to be better approximated, in areas with prominent and rugged topography, such as alpine or some volcanic regions, by a value based on the modelled contribution of the topographic masses to the gradient. Such prediction can be carried out with a digital elevation model (DEM) of sufficient resolution and accuracy. Here we present the VGG field computed for Mt. Etna (Italy), one of the most active and best monitored volcanoes worldwide, to illustrate how strongly the VGG deviates spatially from constant FAG. The predicted (modelled) VGG field is verified by in situ observations. We also take a look at the sensitivity of the VGG prediction to the resolution and quality of used DEMs. We conclude with discussing the applicability of the topo-predicted VGG field in near surface structural and volcanological micro-gravimetric studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Baniamerian, J., Liu, S., & Abbas, M. A. (2018). Stable computation of the vertical gradient of potential field data based on incorporating the smoothing filters. Pure and Applied Geophysics,175, 2785–2806. https://doi.org/10.1007/s00024-018-1857-2.

    Article  Google Scholar 

  • Battaglia, M., Gottsmann, J., Carbone, D., & Fernández, J. (2008). 4D volcano gravimetry. Geophysics,73(6), WA3–WA18. https://doi.org/10.1190/1.2977792.

    Article  Google Scholar 

  • Battaglia, M., Segall, P., & Roberts, C. (2003). The mechanics of unrest at Long Valley caldera, California: 2. Constraining the nature of the source using geodetic and micro-gravity data. Journal of Volcanology and Geothermal Research,127, 219–245.

    Article  Google Scholar 

  • Battaglia, M., Troise, C., Obrizzo, F., Pingue, F., & DeNatale, G. (2006). Evidence for fluid migration as the source of deformation at Campi Flegrei caldera Italy. Geophysical Reseach Letters,33, L01307. https://doi.org/10.1029/2005GL024904.

    Article  Google Scholar 

  • Berrino, G. (1994). Gravity changes induced by height-mass variations at the Campi Flegrei caldera. Journal of Volcanology and Geothermal Research,61, 293–309.

    Article  Google Scholar 

  • Bisson, M., Spinetti, C., Neri, M., & Bonforte, A. (2016). Mt. Etna volcano high-resolution topography: airborne LiDAR modelling validated by GPS data. International Journal of Digital Earth. https://doi.org/10.1080/17538947.2015.

    Article  Google Scholar 

  • Bonaccorso, A., Bonforte, A., Currenti, G., DelNegro, C., DiStefano, A., & Greco, F. (2011). Magma storage, eruptive activity and flank instability: Inferences from ground deformation and gravity changes during the 1993–2000 recharging of Mt. Etna volcano. Journal of Volcanology and Geothermal Research,200, 245–254.

    Article  Google Scholar 

  • Bonafede, M., & Mazzanti, M. (1998). Modelling gravity variations consistent with ground deformation in the Campi Flegrei caldera (Italy). Journal of Volcanology and Geothermal Research,81, 137–157.

    Article  Google Scholar 

  • Bonforte, A., Carbone, D., Greco, F., & Palano, M. (2007). Intrusive mechanism of the 2002 NE-rift eruption at Mt Etna (Italy) modelled using GPS and gravity data. Geophysical Journal International,169, 339–347. https://doi.org/10.1111/j.1365-246X.2006.03249.x.

    Article  Google Scholar 

  • Bonforte, A., Fanizza, G., Greco, F., Matera, A., & Sulpizio, R. (2017). Long-term dynamics across a volcanic rift: 21 years of microgravity and GPS observations on the southern flank of Mt. Etna volcano. Journal of Volcanology and Geothermal Research. https://doi.org/10.1016/j.jvolgeores.2017.06.005.

    Article  Google Scholar 

  • Branca, S., Coltelli, M., Groppelli, G., & Lentini, F. (2011). Geological map of Etna volcano, 1:50,000 scale. Italian Journal of Geosciences (Bollettino della Societa Geologica Italiana),130(3), 265–291. https://doi.org/10.3301/ijg.2011.15.

    Article  Google Scholar 

  • Carbone, D., & Greco, F. (2007). Review of microgravity observations at Mt. Etna: A powerful tool to monitor and study active volcanoes. Pure and Applied Geophysics,164, 769–790. https://doi.org/10.1007/s00024-007-0194-7.

    Article  Google Scholar 

  • Carbone, D., Poland, M. P., Diament, M., & Greco, F. (2017). The added value of time-variable microgravimetry to the understanding of how volcanoes work. Earth-Science Reviews,169, 146–179. https://doi.org/10.1016/j.earscirev.2017.04.014.

    Article  Google Scholar 

  • EMODnet Bathymetry Consortium. (2016). EMODnet digital bathymetry (DTM). Retrieved June 2018, from http://doi.org/10.12770/c7b53704-999d-4721-b1a3-04ec60c87238.

  • Fregoso, E., Palafox, A., & Moreles, M. A. (2019). Initializing cross-gradients joint inversion of gravity and magnetic data with a Bayesian surrogate gravity model. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-019-02334-w.

    Article  Google Scholar 

  • Greco, F., Currenti, G., D’Agostino, G., Germak, A., Napoli, R., Pistorio, A., et al. (2012). Combining relative and absolute gravity measurements to enhance volcano monitoring. Bulletin of Volcanology,74, 1745–1756. https://doi.org/10.1007/s00445-012-0630-0.

    Article  Google Scholar 

  • Jarvis, A., Reuter, H. I., Nelson, A., & Guevara, E. (2008). Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90 m Database. Retrieved June 2018, from http://srtm.csi.cgiar.org.

  • Jousset, P. (1996). Gravimétrie et microgravimétrie en volcanologie: méthodologie et application au volcan Merapi, Java, Indonésie. Ph.D. Univ. Paris VII—IPGP (p. 325).

  • Jousset, P., & Okada, H. (1999). Post-eruptive volcanic dome evolution as revealed by deformation and microgravity observations at Usu volcano (Hokkaido, Japan). Journal of Volcanology and Geothermal Research,89, 255–273.

    Article  Google Scholar 

  • Lin, W., & Zhdanov, M. S. (2019). The Gramian method of joint inversion of the gravity gradiometry and seismic data. Pure and Applied Geophysics,176, 1659–1672. https://doi.org/10.1007/s00024-018-02088-x.

    Article  Google Scholar 

  • Pamukçu, O., Gönenç, T., Çırmık, A., et al. (2019). The geothermal potential of Büyük Menderes Graben obtained by combined 2.5-D normalized full gradient results. Pure and Applied Geophysics,176, 5003–5026. https://doi.org/10.1007/s00024-019-02227-y.

    Article  Google Scholar 

  • Pistorio, A., Greco, F., Currenti, G., Napoli, R., Sicali, A., DelNegro, C., et al. (2011). High-precision gravity measurements using absolute and relative gravimeters at Mount Etna (Sicily, Italy). Annales Geophysicae,54(5), 500–509. https://doi.org/10.4401/ag-5348.

    Article  Google Scholar 

  • Potent v.4.11.06. (2010). User guide. Manuscript, Geophysical Software Solutions Pty. Ltd., Gungahlin, Australia.

  • Schiavone, D., & Loddo, M. (2007). 3-D density model of Mt. Etna Volcano (Southern Italy). Journal of Volcanology and Geothermal Research,164, 161–175.

    Article  Google Scholar 

  • Tarquini, S., Vinci, S., Favalli, M., Doumaz, F., Fornaciai, A., & Nannipieri, L. (2012). Release of a 10-m-resolution DEM for the Italian territory: Comparison with global-coverage DEMs and anaglyph-mode exploration via the web. Computers and Geosciences,38, 168–170. https://doi.org/10.1016/j.cageo.2011.04.018.

    Article  Google Scholar 

  • Tu, X., & Zhdanov, M. S. (2019). Enhancement and sharpening the migration images of the gravity field and its gradients. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-019-02397-9.

    Article  Google Scholar 

  • Vajda, P., Zahorec, P., Bilčík, D., & Papčo, J. (2019). Deformation-induced topographic effects in interpretation of spatiotemporal gravity changes: Review of approaches and new insights. Surveys in Geophysics. https://doi.org/10.1007/s10712-019-09547-7.

    Article  Google Scholar 

  • Vajda, P., Zahorec, P., Papčo, J., & Kubová, A. (2015). Deformation induced topographic effects in inversion of temporal gravity changes: First look at Free Air and Bouguer terms. Contributions to Geophysics and Geodesy,45(2), 149–171. https://doi.org/10.1515/congeo-2015-0018.

    Article  Google Scholar 

  • Zahorec, P., Marušiak, I., Mikuška, J., Pašteka, R., & Papčo, J. (2017). Numerical calculation of terrain correction within the Bouguer anomaly evaluation. In R. Pašteka, J. Mikuška, & B. Meurers (Eds.), Understanding the Bouguer anomaly: A gravimetry puzzle (pp. 79–92). Amsterdam: Elsevier. ISBN 978-0-12-812913-5.

    Chapter  Google Scholar 

  • Zahorec, P., Mikuška, J., Papčo, J., Marušiak, I., Karcol, R., & Pašteka, R. (2015). Towards the measurement of zero vertical gradient of gravity on the Earth’s surface. Studia Geophysica et Geodaetica,59(4), 524–537. https://doi.org/10.1007/s11200-015-0837-6.

    Article  Google Scholar 

  • Zahorec, P., Papčo, J., Mikolaj, M., Pašteka, R., & Szalaiová, V. (2014). The role of near topography and building effects in vertical gravity gradients approximation. First Break,32(1), 65–71.

    Google Scholar 

  • Zahorec, P., Papčo, J., Vajda, P., Greco, F., Cantarero, M., & Carbone, D. (2018). Refined prediction of vertical gradient of gravity at Etna volcano gravity network (Italy). Contributions to Geophysics and Geodesy,48(4), 299–317. https://doi.org/10.2478/congeo-2018-0014.

    Article  Google Scholar 

  • Zahorec, P., Vajda, P., Papčo, J., Aparicio, S. S., & De Pablo, J. P. (2016). Prediction of vertical gradient of gravity and its significance for volcano monitoring: Example from Teide volcano. Contributions to Geophysics and Geodesy,46(3), 203–220. https://doi.org/10.1515/congeo-2016-0013.

    Article  Google Scholar 

  • Zhao, D., Li, S., Bao, H., & Wang, Q. (2015). Accurate approximation of vertical gravity gradient within the earth’s external gravity field. In: Jin, S., & Barzaghi, R. (eds) IGFS 2014. IAG Symposia, Vol. 144. Springer, Berlin. https://doi.org/10.1007/1345_2015_113.

Download references

Acknowledgements

This work was supported by the Slovak Research and Development Agency under the contract (Project) No. APVV-16-0482 (acronym LITHORES), and by the Scientific Grant Agency VEGA under projects Nos. 2/0006/19 and 2/0100/20. We thank Gerald Gabriel for a thorough review and suggested improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Vajda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vajda, P., Zahorec, P., Papčo, J. et al. Topographically Predicted Vertical Gravity Gradient Field and Its Applicability in 3D and 4D Microgravimetry: Etna (Italy) Case Study. Pure Appl. Geophys. 177, 3315–3333 (2020). https://doi.org/10.1007/s00024-020-02435-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-020-02435-x

Keywords

Navigation