Skip to main content

Advertisement

Log in

A nature inspired optimization algorithm for VLSI fixed-outline floorplanning

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

VLSI floorplan optimization problem aim to minimize the following measures such as, area, wirelength and dead space (unused space) between modules. This paper proposed a method for solving floorplan optimization problem using Genetic Algorithm which is named as ‘Lion Optimization Algorithm’ (LOA). LOA is developed for non-slicing floorplans having soft modules with fixed-outline constraint. Although a number of GAs are developed for solving VLSI floorplan optimization problems, they are using weighted sum approach with single objective optimization and crossover between two B*tree structure is not yet attempted. This paper explains, power of B*tree crossover operator for multiobjective floorplanning problem. This operator introduces additional perturbations in initial B*tree structure to create two new different B*tree structures compared with classical GA approach. Simulation results on Microelectronics Center of North Carolina and Gigascale Systems Research Center benchmarks indicate that LOA floorplanner achieves significant savings in wirelength and area minimization also produces better results for dead space minimization compared to previous floorplanners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alpert, C. J., Mehta, D. P., & Sapatnekar, S. (2008). Handbook of algorithms for physical design automation (1st ed.). Auerbach, Boston: CRC publishers.

    Book  Google Scholar 

  2. Anand, S., Saravanasankar, S., & Subbaraj, P. (2012). Customized simulated annealing-based decision algorithms for combinatorial optimization in VLSI floorplanning problem. Computational Optimization and Applications,52(3), 667–678.

    Article  MathSciNet  Google Scholar 

  3. Areibi, S. (2001). Recursive and flat partitioning for VLSI circuit design. In Proceedings of the 13th international conference on microelectronics (pp. 237–240).

  4. Bongard, J. (2009). Biologically inspired computing. IEEE Computer Journal,42(4), 95–98.

    Article  Google Scholar 

  5. Cohoon, J. P., & Paris, W. D. (1987). Genetic placement. IEEE Transactions on CAD of Integrated Circuits and Systems,6(6), 956–964.

    Article  Google Scholar 

  6. Chen, G., Guo, W., & Chen, Y. A. (2010). A PSO-based intelligent decision algorithm for VLSI floorplanning. Soft Computing, Fusion, Foundation Methodologies and Applications,14(12), 1329–1337. https://doi.org/10.1007/s00500-009-0501-6.

    Article  Google Scholar 

  7. Chen, T. C., & Chang, Y. W. (2006). Modern floorplanning based on fast simulated annealing. IEEE Transactions on CAD,25(4), 510–522.

    Google Scholar 

  8. Christine Valenzuela, L., & Wang, P. Y. (2000). A genetic algorithm for VLSI floorplanning. In Proceedings of the 6th international conference on parallel problem solving from nature (pp. 671–680).

  9. Christine Valenzuela, L., & Wang, P. Y. (2002). VLSI placement and area optimization using a genetic algorithm to breed normalized postfix expressions. IEEE Transactions on Evolutionary Computation,6(4), 390–401.

    Article  Google Scholar 

  10. David, E. G. (1989). Genetic algorithms in search optimization and machine learning (p. 41). Boston: Addison Wesley.

    Google Scholar 

  11. Deb, K. (2001). A multi-objective optimization using evolutionary algorithms. Hoboken: Wiley.

    MATH  Google Scholar 

  12. Forbes, N. (2000). Biologically inspired computing. Computing in Science & Engineering,2(6), 83–87.

    Article  Google Scholar 

  13. Hoo, C. S., Jeevan, K., Ganapathy, V., & Ramaiah, H. (2013). Variable-order ant system for VLSI multiobjective floorplanning. Applied Soft Computing,13(7), 3285–3297.

    Article  Google Scholar 

  14. Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press.

    Google Scholar 

  15. Hung, W. L., Xie, Y., Vijaykrishnan, N., Addo-Quaye, C., Theocharides, T., & Irwin, M. J. (2005) Thermal-aware floorplanning using genetic algorithms. In Sixth international symposium on quality electronic design (isqed’05). https://doi.org/10.1109/isqed.2005.122.

  16. Lin, T., Chen, D. S., & Wang, Y. W. (2004). Robust fixed-outline floorplanning through evolutionary search. In ASP-DAC’04: proceedings of the 2004 Asia and South Pacific design automation conference (pp. 42–44). IEEE Press, Piscataway.

  17. Mazumder, P., & Rudnick, E. M. (1999). Genetic algorithms for VLSI design, layout and test automation. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  18. Maziar, Y., & Fariborz, J. (2016). Lion optimization algorithm (LOA): A nature-inspired metaheuristic algorithm. Journal of Computational Design and Engineering,3, 24–36.

    Article  Google Scholar 

  19. Rajakumar, B. R. (2012) The Lion’s Algorithm: a new nature-inspired search algorithm. In Proceedings of 2nd international conference on communication, computing & security (ICCCS-2012) (Vol. 6, pp. 126–35). Procedia Technology.

  20. Rechenberg, I. (1973). Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution, Dr.-Ing. Thesis, Technical University of Berlin, Department of Process Engineering.

  21. Sait, S. M., El-Maleh, A. M., & Al-Abaji, R. H. (2003). General iterative heuristics for VLSI multiobjective partitioning. In Proceedings of the international symposium on circuits and systems (pp. 497–500).

  22. Singha, T., Dutta, H. S., & De, M. (2012). Optimization of floorplanning using genetic algorithm. Procedia Technology,4, 825–829.

    Article  Google Scholar 

  23. Sivaranjani, P., & Senthil Kumar, A. (2012). Thermal-aware non-slicing VLSI floorplanning using a smart decision-making PSO-GA based hybrid algorithm. Circuits, Systems, Signal Processing.. https://doi.org/10.1007/s00034-015-0020-x.

    Article  Google Scholar 

  24. Shahookar, K., & Mazumder, P. (1990). GASP: A genetic algorithm for standard cell placement. In EURO-DAC’90: Proceedings of the conference on European design automation (pp. 660–664). Los Alamitos, CA, USA: IEEE Computer Society Press.

  25. Sherwani, N. A. (1999). Algorithms for VLSI physical design automation. Norwell, MA: Kluwer Academic Publishers.

    MATH  Google Scholar 

  26. Shadbolt, N. (2004). Nature inspired computing. IEEE Journal on Intelligent Systems,19(1), 2–3.

    Article  Google Scholar 

  27. Souza, J. G., & Costa, J. A. F. (2009). Unsupervised data clustering and image segmentation using natural computing techniques. In IEEE international conference on systems, man and cybernetics (pp. 5045–5050).

  28. Storn, R. (1996) On the usage of differential evolution for function optimization. In Biennial conference of the North American fuzzy information processing society (NAFIPS) (pp. 519–523).

  29. Tang, M., & Sebastian, M. (2005). A genetic algorithm for VLSI floorplanning using O-tree representation, applications on evolutionary computing. Lecture Notes in Computer Science (pp. 215–224). Berlin/Heidelberg: Springer.

  30. Tang, M., & Yao, X. (2007). A memetic algorithm for VLSI floorplanning. IEEE Transactions on Systems Man Cybernetics,37(1), 123–135.

    Google Scholar 

  31. The analyse-it general statistics software for Microsoft excel. Retrieved July 5, 2006, from http://www.analyse-it.com.

  32. Wong, D., & Liu, C. (1989). Floorplan design of VLSI circuit. Algorithmica,4(4), 263–291.

    Article  MathSciNet  Google Scholar 

  33. Wu, G. M., Wu, S. W., Chang, Y. W., & Chang, Y. C. (2000). B*-trees: A new representation for non-slicing floorplans. In Proceedings of the 37th design automation.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shunmugathammal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shunmugathammal, M., Columbus, C.C. & Anand, S. A nature inspired optimization algorithm for VLSI fixed-outline floorplanning. Analog Integr Circ Sig Process 103, 173–186 (2020). https://doi.org/10.1007/s10470-020-01598-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-020-01598-w

Keywords

Navigation