Skip to main content

Advertisement

Log in

Nanohydroxyapatite and its textures as potential carriers of promising short-lived lead isotopes

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The possibility of sorption and cocrystallization binding of lead(n) with nanohydroxyapatite (HAP) acting as a potential carrier of short-lived lead radionuclides 211,212Pb was studied. The peculiarities of the kinetics were revealed, and the isotherms of sorption of lead ions on hydroxyapatite with different textures were constructed. A multistage sorption mechanism accompanied by a change in the structure and morphology of the sorbent was studied. The possibility of the formation of a new phase (hydroxypyromorphite) of lead during the sorption and cocrystallization interaction was shown. The introduction of lead into the synthesis of HAP at the early stages of crystallization exerts the highest effect on its morphology and structure. The optimization of the formation of the HAP-Pb composite over the course of the process will make it possible to use the short-lived 211Pb radionuclide in subsequent experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Kim, M. Brechbiel, Tumor Biol., 2012, 33, 573.

    Article  CAS  Google Scholar 

  2. M. Makvandi, E. Dupis, J. W. Engle, E. M. Nortier, M. E. Fassbender, S. Simon, E. R. Birnbaum, R. W. Atcher, K. D. John, O. Rixe, J. P. Norenberg, Targeted Oncology, 2018. 189; https://doi.org/10.1007/s11523-018-0550-9.

    Google Scholar 

  3. L. I. Guseva, J. Radioanal. Nucl. Chem., 2009, 281, 557.

    Article  Google Scholar 

  4. L. I. Guseva, Radiochemistry, 2014, 56, 451.

    Article  CAS  Google Scholar 

  5. K. Kotharia, S. Suresha, H. D. Sarmab, V. Meeraa, M. R. A. Vilaia, Appl. Radiation and Isotopes, 2003, 58, 463.

    Article  Google Scholar 

  6. S. Chakrabortya, T. Dasa, H. D. Sarmab, M. Venkatesha, S. Banerjeea, Nucl. Med. Com., 2002, 23, No. 1, 67.

    Article  Google Scholar 

  7. G. Clunie, D. Lui, I. Cullum, J. C. W. Edwards, P. J. Ell, J. Nucl. Med., 1995, 36, 51.

    CAS  PubMed  Google Scholar 

  8. J. Kozempel, M. Vlk, E. Malkova, A. Bajzikova, J. Barta, R. Santos-Oliveira, A. Malta Rossi, J. Radioanal. Nucl. Chem., 2014, 304, 1, 443.

    Article  Google Scholar 

  9. A. N. Vasiliev, A. V. Severin, E. V. Lapshina, E. V. Chernykh, S. Ermolaev, S. N. Kalmykov, J. Radioanal. Nucl. Chem., 2017, 311, 1503.

    Article  CAS  Google Scholar 

  10. A. V. Severin, M. A. Orlova, E. S. Shalamova, T. P. Troflmova, I. A. Ivanov, Russ. Chem. Bull., 2017, 66, 10.

    Article  Google Scholar 

  11. M. A. Orlova, A. L. Nikolaev, T. P. Troflmova, A. V. Severin, A. V. Gopin, N. S. Zolotova, V. K. Dolgova, A. P. Orlov, Russ. Chem. Bull., 2019, 68, 1102.

    Article  CAS  Google Scholar 

  12. Y. Hashimoto, T. Sato, Chemosphere, 2007, 69, 1775.

    Article  CAS  Google Scholar 

  13. T. Kaludjerovic-Radoicic, S. Raicevic, Chem. Eng. J., 2010, 160, 503.

    Article  CAS  Google Scholar 

  14. B. Sandrine, N. Ange, B. Didier, C. Eric, S. Patrick, J. Hazardous Mater, 2007, 139, 443.

    Article  CAS  Google Scholar 

  15. Z. Zhang, M. Li, W. Chen, S. Zhu, N. Liu, L. Zhu, Environ. Poll, 2010, 158, 514.

    Article  CAS  Google Scholar 

  16. E. Mavropoulos, A. Malta Rossi, A. Costa, Environ. Sol. Technol., 2002, 36, 1625.

    Article  CAS  Google Scholar 

  17. D. E. Ellis, Phys. Chem. Chem. Phys., 2006, 8, 967.

    Article  CAS  Google Scholar 

  18. Zhiliang Xiu, Mengkai Lu, Feng Gu, Shufen Wang, Dong Xu, Duorong Yuan, Inorg. Chem. Comm., 2004, 7, 604.

    Article  CAS  Google Scholar 

  19. I. V. Melikhov, V. F. Komarov, A. V. Severin, V. E. Bozhevol'-nov, V. N. Rudin, Dokl. Phys. Chem., 2000, 373, Nos 1–3,125.

    Google Scholar 

  20. A. L. Nikolaev, A. V. Gopin, A. V. Severin, V. K. Dolgova, Struktura i dinamika molekulyarnykh sistem [Structure and Dynamics of Molecular Systems] (Yal'chik-2016), Abstracts, A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 2016, p. 116 (in Russian).

    Google Scholar 

  21. A. V. Severin, D. A. Pankratov, Russ. J. Inorg. Chem., 2016, 61,265.

    Article  CAS  Google Scholar 

  22. V. B. Aleskovskii, Fiziko-khimicheskie metody analiza [Physico-chemical Methods of Analysis], Ripol Klassik, Moscow, 2013, 116 (in Russian).

    Google Scholar 

  23. Y. Xu, F. Schwartz, J. Contam. Hydrol, 1994, 15, 187.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Severin.

Additional information

This work was financially supported by the Russian Foundation for Basic Research (Projects Nos 18-03-00432 and 19-08-00055) using the equipment of the Research and Educational Center for Collective Use at the Chemical Department of the M. V. Lomonosov Moscow State University “Nanochemistry and Nanomaterials. Chemistry of Atmosphere.”

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2197–2204, December, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Severin, A.V., Orlova, M.A., Shalamova, E.S. et al. Nanohydroxyapatite and its textures as potential carriers of promising short-lived lead isotopes. Russ Chem Bull 68, 2197–2204 (2019). https://doi.org/10.1007/s11172-019-2688-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-019-2688-8

Keywords

Navigation