Skip to main content
Log in

Synthesis and antimicrobial activity of arabinogalactan-stabilized selenium nanoparticles from sodium bis(2-phenylethyl)diselenophosphinate

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Water-soluble elemental selenium nanocomposites containing 0.8-3.9% Se were synthesized by oxidation of sodium bis(2-phenylethyl)diselenophosphinate in aqueous medium in the presence of the natural polysaccharide arabinogalactan as a stabilizer for nanoparticles. Using a complex of physicochemical research methods (TEM, XRD, IR spectroscopy), it was found that the nanocomposites were formed as spherical particles of amorphous selenium of 31–78 nm in size, which are dispersed in the polysaccharide matrix. For the nanocomposite containing 3.9% Se, a pronounced antimicrobial activity against the bacterial phytopathogen Clavibacter michiganensis subsp. sepedonicus was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Shpilko, V. M. Korotchenya, APK: Economica, Upra-vlenie [Agrarian Industrial Complex: Economics, Management], 2018, 7, 68 (in Russian).

    Google Scholar 

  2. M. N. Prohorov, Vestnik Ecologicheskogo Obrazovaniya v Rossii [Bulletin of Environmental Education in Russia], 2014, 1, 71, 35 (in Russian).

    Google Scholar 

  3. R. Eichenlaub, K.-H. Gartemann, A. Burger, Plant-Associated Bacteria, Springer, Netherlands, 2006, p. 712.

    Google Scholar 

  4. A. I. Perfllyeva, I. A. Graskova, E. G. Pikhyanov, Agrokhimiya [Agrochemistry], 2013, 12, 34 (in Russian).

    Google Scholar 

  5. L. N. Andreeva, Nauchnie i obrazovatelnie problemy graz-gdanskoi zaschity [Scientific and Educational Problems of Civil Protection], 2010, 2, 25 (in Russian).

    Google Scholar 

  6. B. Hosnedlova, M. Kepinska, S. Skalickova, C. Fernandez, B. Ruttkay-Nedecky, Q. Peng, M. Baron, M. Melcova, R. Opatrilova, J. Zidkova, G. Bjorklund, J. Sochor, R. Kizek, Int. J. Nanomedicine, 2018, 13, 2107.

    Article  CAS  Google Scholar 

  7. V. I. Dubrovina, S. A. Medvedeva, S. A. Vityazeva, O. B. Kolesnikova, G. P. Alexandrova, L. O. Gutsol, L. A. Gri-schenko, T. D. Tchetveryakova, Structura i immunomodu-liruyuschee deistvie arabinogalactana listvennitsy sibirskoi lego metalloproizyodnyh [Structure and Immunomodulatory Effects of Arabinogalactan of Siberian larch and Its Metal Derivatives], Izd-vo Asprint, Irkutsk, 2007, 145 pp. (in Russian).

    Google Scholar 

  8. M. V. Lesnichaya, G. P. Alexandrova, T. V. Fadeeva, I. A. Shurygina, B. G. Sukhov, B. A. Troflmov, Zhum. Infectologii [Journal of Infectology], 2017, 9, 92 (in Russian).

    Google Scholar 

  9. G. P. Alexandrova, A. S. Boymirzaev, M. V. Lesnichaya, B. G. Sukhov, B. A. Troflmov, Russ. J. Gen. Chem., 2015, 85, 488.

    Article  Google Scholar 

  10. G. P. Alexandrova, L. A. Grischenko, T. V. Fadeeva, B. G. Sukhov, B. A. Troflmov, Nanotechnika [Nanotechnology], 2010, 3, 34 (in Russian).

    Google Scholar 

  11. B. A. Troflmov, B. G. Sukhov, V. V. Nosyreva, A. G. Mal'-kina, G. P. Alexandrova, L. A. Grischenko, Dokl. Chem., 2007, 417, 261.

    Article  Google Scholar 

  12. G. P. Alexandrova, L. A. Grishchenko, A. S. Bogomyakov, B. G. Sukhov, V. I. Ovcharenko, B. A. Troflmov, Russ. Chem. Bull., 2010, 59, 2318.

    Article  Google Scholar 

  13. S. Shoeibi, P. Mozdziak, A. Golkar-Narenji, Top. Curr. Chem., 2017, 375, 88.

    Article  Google Scholar 

  14. V. Alagesan, S. Venugopal, BioNano Science, 2019, 9, 105.

    Article  Google Scholar 

  15. M. Kapur, K. Soni, K. Kohli, Adv. Tech. Biol. Med., 2017, 5, 198.

    Article  Google Scholar 

  16. S. Pouri, H. Motamedi, S. Honary, I. Kazeminezhad, Braz. Arch. Biol. Technol., 2017, 60, e17160452.

    Google Scholar 

  17. S. A. Wadhwani, M. Gorain, P. Banerjee, U. U. Shedbalkar, R. Singh, G. C. Kundu, B. A. Chopade, Int. J. Nanomedicine, 2017, 12, 6841.

    Article  CAS  Google Scholar 

  18. G. A. Abakumov, A. V. Piskunov, V. K. Cherkasov, I. L. Fedushkin, V. P. Ananikov, D. B. Eremin, E. G. Gordeev, I. P. Beletskaya, A. D. Averin, M. N. Bochkarev, A. A. Trifonov, U. M. Dzhemilev, V. A. D'yakonov, M. P. Egorov, A. N. Vereshchagin, M. A. Syroeshkin, V. V. Jouikov, A. M. Muzafarov, A. A. Anisimov, A. V. Arzumanyan, Yu. N. Kono-nevich, M. N. Temnikov, O. G. Sinyashin, Yu. H. Bud-nikova, A. R. Burilov, A. A. Karasik, V. F. Mironov, P. A. Storozhenko, G. I. Shcherbakova, B. A. Troflmov, S. V. Amosova, N. K. Gusarova, V. A. Potapov, V. B. Shur, V. V. Burlakov, V. S. Bogdanov, M. V. Andreev, Russ. Chem. Rev., 2018, 87, 393.

    Article  CAS  Google Scholar 

  19. B. A. Troflmov, A. V. Artemiev, S. F. Malysheva, N. K. Gusarova, Dokl. Chem., 2009, 428, 225.

    Article  Google Scholar 

  20. A. V. Artem'ev, S. F. Malysheva, N. K. Gusarova, B. A. Troflmov, Synthesis, 2010, 14, 2463.

    Google Scholar 

  21. B. A. Troflmov, A. V. Artem'ev, S. F. Malysheva, N. K. Gusarova, J. Organomet. Chem., 2009, 694, 4116.

    Article  Google Scholar 

  22. A. V. Artem'ev, N. K. Gusarova, S. F. Malysheva, I. A. Ushakov, B. A. Troflmov, Tetrahedron Left., 2010, 51, 2141.

    Article  CAS  Google Scholar 

  23. S. F. Malysheva, N. K. Gusarova, N. A. Belogorlova, A. O. Sutyrina, A. I. Albanov, B. G. Sukhov, V. A. Kuimov, Yu. I. Litvintsev, B. A. Troflmov, Mendeleev Commun., 2018, 28, 29.

    Article  CAS  Google Scholar 

  24. T. S. Lobana, J.-C. Wang, C. W. Liu, Coord. Chem. Rev., 2007, 251,9.

    Article  Google Scholar 

  25. M. D. Mashkovskyi, lekarstvennye sredstva [Medicines], Izd-vo Medicina, Moscow, 1998, 360 pp. (in Russian).

    Google Scholar 

  26. N. T. K. Thanh, N. Maclean, S. Mahiddine, Chem. Rev., 2014, 114, 7610.

    Article  CAS  Google Scholar 

  27. V. L. C. Tan, A. Hinchman, R. Williams, P. A. Tran, K. Fox, Biointerphases, 2018, 13, 06D301.

    Article  Google Scholar 

  28. E. N. Medvedeva, B. A. Babkin, L. A. Ostrouchova, Khimiya rastitel´nogo syriya [Chemistry of Plant Raw Materials], 2003, 1, 27 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Lesnichaya.

Additional information

In the experiments, we used materials from the center for collective usage “Biological Resource Center of Siberian Institute of Plant Physiology and Biochemistry (SIPPB SB RAS)”, as well as equipment from the center for collective usage of the Limnological Institute of SB RAS and the Baikal analytical center for collective usage of A. E. Favorsky Irkutsk Institute of Chemistry of SB RAS.

This work in part was financially supported by the Russian Foundation for Basic Research (Project No. 18-316-20017; synthesis of selenium containing nanocomposites and study of their antimicrobial activity) and within the framework of the state task of A. E. Favorsky Irkutsk Institute of Chemistry of SB RAS (IrIC SB RAS) (Project No. AAAA-A19-119022690046-4; physicochemical characterization of nanocomposites).

Based on the materials of the 4th Russian Conference on Medicinal Chemistry with International participation (June 9–14, 2019, Ekaterinburg, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2245–2251, December, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lesnichaya, M.V., Malysheva, S.F., Belogorlova, N.A. et al. Synthesis and antimicrobial activity of arabinogalactan-stabilized selenium nanoparticles from sodium bis(2-phenylethyl)diselenophosphinate. Russ Chem Bull 68, 2245–2251 (2019). https://doi.org/10.1007/s11172-019-2694-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-019-2694-x

Keywords

Navigation