Skip to main content
Log in

Thermal and microstructural characterization of a novel ductile cast iron modified by aluminum addition

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

In high-temperature applications, like exhaust manifolds, cast irons with a ferritic matrix are mostly used. However, the increasing demand for higher-temperature applications has led manufacturers to use additional expensive materials such as stainless steels and Ni-resist austenitic ductile cast irons. Thus, in order to meet the demand while using low-cost materials, new alloys with improved high-temperature strength and oxidation resistance must be developed. In this study, thermodynamic calculations with Thermo-Calc software were applied to study a novel ductile cast iron with a composition of 3.5wt% C, 4wt% Si, 1wt% Nb, 0–4wt% Al. The designed compositions were cast, and thermal analysis and microstructural characterization were performed to validate the calculations. The lowest critical temperature of austenite to pearlite eutectoid transformation, i.e., A1, was calculated, and the solidification sequence was determined. Both calculations and experimental data revealed the importance of aluminum addition, as the A1 increased by increasing the aluminum content in the alloys, indicating the possibility of utilizing the alloys at higher temperature. The experimental data validated the transformation temperature during solidification and at the solid state and confirmed the equilibrium phases at room temperature as ferrite, graphite, and MC-type carbides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Partoaa, M. Abdolzadeh, and M. Rezaeizadeh, Effect of fin attachment on thermal stress reduction of exhaust manifold of an off road diesel engine, J. Cent. South Univ., 24(2017), No. 3, p. 546.

    Article  Google Scholar 

  2. Y.H. Zhang, M. Li, L.A. Godlewski, J.W. Zindel, and Q. Feng, Creep behavior at 1273 K (1000°C) in Nb-bearing austenitic heat-resistant cast steels developed for exhaust component applications, Metall. Mater. Trans. A, 47(2016), No. 7, p. 3289.

    Article  CAS  Google Scholar 

  3. M. Ekström and S. Jonsson, High-temperature mechanical- and fatigue properties of cast alloys intended for use in exhaust manifolds, Mater. Sci. Eng. A, 616(2014), p. 78.

    Article  CAS  Google Scholar 

  4. L.M. Åberg and C. Hartung, Solidification of SiMo nodular cast iron for high temperature applications, Trans. Indian Inst. Met., 65(2012), No. 6, p. 633.

    Article  CAS  Google Scholar 

  5. J.P. Shingledecker, P.J. Maziasz, N.D. Evans, and M.J. Pollard, Creep behavior of a new cast austenitic alloy, Int. J. Press. Vessels Pip., 84(2007), No. 1–2, p. 21.

    Article  CAS  Google Scholar 

  6. M.M. Ibrahim, A. Nofal, and M.M. Mourad, Microstructure and hot oxidation resistance of SiMo ductile cast irons containing Si-Mo-Al, Metall. Mater. Trans. B, 48(2017), No. 2, p. 1149.

    Article  CAS  Google Scholar 

  7. Y.H. Zhang, M. Li, L.A. Godlewski, J.W. Zindel, and Q. Feng, Effective design of new austenitic cast steels for ultra-high temperature automotive exhaust components through combined CALPHAD and experimental approaches, Mater. Sci. Eng. A, 683(2017), p. 195.

    Article  CAS  Google Scholar 

  8. F. Tholence and M. Norell, High temperature corrosion of cast alloys in exhaust environments I-ductile cast irons, Oxid. Met., 69(2008), No. 1–2, p. 13.

    Article  CAS  Google Scholar 

  9. M. Ekström, P. Szakalos, and S. Jonsson, Influence of Cr and Ni on high-temperature corrosion behavior of ferritic ductile cast iron in air and exhaust gases, Oxid. Met., 80(2013), No. 5–6, p. 455.

    Article  CAS  Google Scholar 

  10. F. Tholence and M. Norell, High temperature corrosion of cast alloys in exhaust environments II-cast stainless steels, Oxid. Met., 69(2008), No. 1–2, p. 37.

    Article  CAS  Google Scholar 

  11. Y.H. Zhang, M.L. Larry, L.A. Godlewski, J.W. Zindel, and Q. Feng, Effects of W on creep behaviors of novel Nb-bearing high nitrogen austenitic heat-resistant cast steels at 1000°C, Mater. Charact., 139(2018), p. 19.

    Article  CAS  Google Scholar 

  12. M.P. Brady, G. Muralidharan, D.N. Leonard, J.A. Haynes, R.G. Weldon, and R.D. England, Long-term oxidation of candidate cast iron and stainless steel exhaust system alloys from 650 to 800°C in air with water vapor, Oxid. Met., 82(2014), No. 5–6, p. 359.

    Article  CAS  Google Scholar 

  13. G.M.C. Güiza, W. Hormaza, A.R. Galvis E, and L.M.M. Morenod, Bending overload and thermal fatigue fractures in a cast exhaust manifold, Eng. Fail. Anal., 82(2017), p. 138.

    Article  Google Scholar 

  14. J.W. Soedarsono, T.P. Soemardi, B. Suharno, and R.D. Sulamet-Ariobimo, Effects of carbon equilavent on the microstructures of thin wall ductile iron, J. Mater. Sci. Eng., 5(2011), No. 3, p. 266.

    Google Scholar 

  15. G.E. Totten, Steel Heat Treatment Handbook, Chemical Rubber Company Press, Boca Raton, 2006.

    Google Scholar 

  16. H. Bhadeshia and R. Honeycombe, Steels: Microstructure and Properties, Elsevier, Oxford, 2006.

    Google Scholar 

  17. A.R.K. Rashid and D.V. Edmonds, Oxidation behaviur of Al-alloyed ductile cast irons at elevated temperature, Surf. Interface Anal., 36(2004), No. 8, p. 1011.

    Article  CAS  Google Scholar 

  18. A. Hassani, A. Habibolahzadeh, and S. Sadeghinejad, Comparison of microstructural and tribological effects of low vanadium-low titanium additions to a gray cast iron, J. Mater. Eng. Perform., 22(2013), No. 1, p. 267.

    Article  CAS  Google Scholar 

  19. T.N.F. Souzo, R.A.P.S. Nogueira, F.J.S. Franco, M.T.P. Aguilar, and P.R. Cetlin, Mechanical and microstructural characterization of nodular cast iron (NCI) with niobium additions, Mater. Res., 17(2014), No. 5, p. 1167.

    Article  Google Scholar 

  20. Y.Z. Lv, Y.F. Sun, J.Y. Zhao, G.W. Yu, J.J. Shen, and S.M. Hu, Effect of tungsten on microstructure and properties of high chromium cast iron, Mater. Des., 39(2012), p. 303.

    Article  CAS  Google Scholar 

  21. C. Delprete and R. Sesana, Experimental characterization of Si-Mo-Cr ductile cast iron, Mater. Des., 57(2014), p. 528.

    Article  CAS  Google Scholar 

  22. A. Bedolla-Jacuindde, E. Solis, and B. Hernandez, Effect of niobium in medium alloyed ductile cast irons, Int. J. Cast Met. Res., 16(2003), No. 5, p. 481.

    Article  Google Scholar 

  23. D.X. Zeng, Y.H. Zhang, J.Y. Liu, H.J. He, and X.X. Hong, Characterization of titanium-containing compounds in gray iron, Tsinghua Sci. Technol., 13(2008), No. 2, p. 127.

    Article  CAS  Google Scholar 

  24. M. Gómy and M. Kawalec, Effects of titanium addition on microstructure and mechanical properties of thin-walled compacted graphite iron castings, J. Mater. Eng. Perform., 22(2013), No. 5, p. 1519.

    Article  CAS  Google Scholar 

  25. X.R. Chen, J. Xu, H. Hu, H. Mohrbacher, M. Kang, W. Zhang, A.M. Guo, and Q.J. Zhai, Effects of niobium addition on microstructure and tensile behavior of as-cast ductile iron, Mater. Sci. Eng. A, 688(2017), p. 416.

    Article  CAS  Google Scholar 

  26. T. Elbel and J. Hampl, Influence of Al and Ti on microstructure and quality of compacted graphite iron casting, Metalurgija, 48(2009), No. 4, p. 243.

    CAS  Google Scholar 

  27. M. Gómy and M. Kawalec, Role of titanium in thin wall vermicular graphite iron casting production, Arch. Foundry Eng., 13(2013), No. 2, p. 25.

    Article  Google Scholar 

  28. C.A. Cooper, R. Elliott, and R.J. Young, Investigation of elastic property relationships for flake and spheroidal cast irons using Raman spectroscopy, Acta Mater., 50(2002), No. 16, p. 4037.

    Article  CAS  Google Scholar 

  29. H. Nakae and H. Shin, Effect of graphite morphology on tensile properties of flake graphite cast iron, Mater. Trans., 42(2001), No. 7, p. 1428.

    Article  CAS  Google Scholar 

  30. D. Holmgren, A. Diószegi, and I.L. Svensson, Effects of nodularity on thermal conductivity of cast iron, Int. J. Cast Met. Res., 20(2007), No. 1, p. 30.

    Article  CAS  Google Scholar 

  31. V. Gautam, S. Ahuja, and N. Ram, Design and solidification simulation of exhaust manfold made of SiMo ductile cast iron, ELK Asia Pac. J., (2017), p. 978.

  32. P.H. Huang, J.K. Kuo, T.H. Fang, and W.R. Wu, Numerical simulation and design of casting system for stainless steel exhaust manifold, MATEC Web Conf., 185(2018), p. 8.

    Article  CAS  Google Scholar 

  33. B.M. Moon, S.M. Lee, and C.P. Hong, Alloy design for a low thermal expansion cast iron with enhanced mechanical properties, Int. J. Cast Met. Res., 11(1999), No. 6, p. 573.

    Article  CAS  Google Scholar 

  34. J.S. Aristeidakis and G.N. Haidemenopoulos, Alloy design based on computational thermodynamics and multi-objective optimization: the case of medium-Mn steels, Metall. Mater. Trans. A, 48(2017), No. 5, p. 2584.

    Article  CAS  Google Scholar 

  35. U.R. Kattner, The Calphad method and its role in material and process development, Technol. Met. Mater. Min., 13(2016), No. 1, p. 3.

    Article  Google Scholar 

  36. H.L. Lukas, S.G. Fries, and B. Sundman, Computyational Thermodynamics: The Calphad Method, Cambridge University Press, New York, 2007.

    Book  Google Scholar 

  37. Y.J. Soo, M.P. Phaniraj, D.I. Kim, J.H. Shim, and M.Y. Huh, Effect of aluminum content on the microstructure and mechanical properties of hypereutectoid steels, Metall. Mater. Trans. A, 41(2010), No. 8, p. 2078.

    Article  CAS  Google Scholar 

  38. T. Seifert and H. Riedel, Mechanism-based thermomechanical fatigue life prediction of cast iron. part I: models, Int. J. Fatigue, 32(2010), No. 8, p. 1358.

    Article  CAS  Google Scholar 

  39. C.P. Sharma, Engineering Materials: Properties and Applications of Metals and Alloys, New Delhi, Prentice-Hall, 2004.

    Google Scholar 

  40. Z. Yang, X.P. Liu, J. Fu, X.S. Zhao, L.J. Jiang, and S.M. Wang, Thermal expansion properties of Fe-Ni-Co superinvar alloy with Mn, Chin. J. Rare Met., 37(2013), No. 3, p. 501.

    CAS  Google Scholar 

  41. Y.Z. Liu, Y.F. Li, J.D. Xing, S.G. Wang, B.C. Zheng, D. Tao, and W. Li, Effect of graphite morphology on the tensile strength and thermal conductivity of cast iron, Mater. Charact., 144(2018), p. 155.

    Article  CAS  Google Scholar 

  42. T. Matsushita, E. Ghassemali, A.G. Saro, L. Elmquist, and A.E.W. Jarfors, On thermal expansion and density of CGI and SGI cast irons, Metals, 5(2015), p. 1000.

    Article  CAS  Google Scholar 

  43. M.S. Soiński, A. Jakubus, and G. Stradomski, The influence of aluminium on the spheroidization of cast iron assessed on the basis of wedge test, Arch. Foundry Eng., 13(2013), No. 2, p. 163.

    Google Scholar 

  44. D.L. Li, Discussion of “microstructure and hot oxidation resistance of SiMo ductile cast irons containing Si-Mo-Al”, Metall. Mater. Trans. B, 49(2018), No. 2, p. 858.

    Article  CAS  Google Scholar 

  45. E. Kozeschnik and H.K.D.H. Bhadeshia, Influence of silicon on cementite precipitation in steels, Mater. Sci. Technol., 24(2008), No. 3, p. 343.

    Article  CAS  Google Scholar 

  46. B. Cygan, M. Stawarz, and J. Jezierski, Heat treatment of the SiMo iron castings-case study in automotive foundry, Arch. Foundry Eng., 18(2018), No. 4, p. 103.

    CAS  Google Scholar 

Download references

Acknowledegements

The authors, G. Aktaş Çelik, Ş. Polat and Ş. H. Atapek wish to acknowledge the financial support given by Scientific Research Projects Coordination Unit of Kocaeli University under the project No. 2017/118.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gülşah Aktaş Çelik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çelik, G.A., Tzini, MI.T., Polat, Ş. et al. Thermal and microstructural characterization of a novel ductile cast iron modified by aluminum addition. Int J Miner Metall Mater 27, 190–199 (2020). https://doi.org/10.1007/s12613-019-1876-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1876-8

Keywords

Navigation