Skip to main content
Log in

Mechanical characterization of Mg-B4C nanocomposite fabricated at different strain rates

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Magnesium has wide application in industry. The main purpose of this investigation was to improve the properties of magnesium by reinforcing it using B4C nanoparticles. The reinforced nanocomposites were fabricated using a powder compaction technique for 0, 1.5vol%, 3vol%, 5vol%, and 10vol% of B4C. Powder compaction was conducted using a split Hopkinson bar (SHB), drop hammer (DH), and Instron to reach different compaction loading rates. The compressive stress-strain curves of the samples were captured from quasi-static and dynamic tests carried out using an Instron and split Hopkinson pressure bar, respectively. Results revealed that, to achieve the highest improvement in ultimate strength, the contents of B4C were 1.5vol%, 3vol%, and 3vol% for Instron, DH, and SHB, respectively. These results also indicated that the effect of compaction type on the quasi-static strength of the samples was not as significant, although its effect on the dynamic strength of the samples was remarkable. The improvement in ultimate strength obtained from the quasi-static stress-strain curves of the samples (compared to pure Mg) varied from 9.9% for DH to 24% for SHB. The dynamic strength of the samples was improved (with respect to pure Mg) by 73%, 116%, and 141% for the specimens compacted by Instron, DH, and SHB, respectively. The improvement in strength was believed to be due to strengthening mechanisms, friction, adiabatic heating, and shock waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q.B. Nguyen and M. Gupta, Improving compressive strength and oxidation resistance of AZ31B magnesium alloy by addition of nano-Al2O3 particulates and Ca, J. Compos. Mater., 44(2010), No. 7, p. 883.

    Article  CAS  Google Scholar 

  2. M. Gupta, M.O. Lai, and D. Saravanaranganathan, Synthesis, microstructure and properties characterization of disintegrated melt deposited Mg/SiC composites, J. Mater. Sci., 35(2000), No. 9, p. 2155.

    Article  CAS  Google Scholar 

  3. A. Ahmed, A.J. Neely, K. Shankar, P. Nolan, S. Moricca, and T. Eddowes, Synthesis, tensile testing, and microstructural characterization of nanometric SiC particulate-reinforced Al 7075 matrix composites, Metall. Mater. Trans. A, 41(2010), No. 6, p. 1582.

    Article  Google Scholar 

  4. R. Harichandran and N. Selvakumar, Effect of nano/micro B4C particles on the mechanical properties of aluminium metal matrix composites fabricated by ultrasonic cavitation-assisted solidification process, Arch. Civ. Mech. Eng., 16(2016), No. 1, p. 147.

    Article  Google Scholar 

  5. A. Ganguly, S. Sharma, P. Papakonstantinou, and J. Hamilton, Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies, J. Phys. Chem. C, 115(2011), No. 34, p. 17009.

    Article  CAS  Google Scholar 

  6. I. Khelifa, A. Belmokhtar, R. Berenguer, A. Benyoucef, and E. Morallon, New poly (o-phenylenediamine)/modified-clay nanocomposites: A study on spectral, thermal, morphological and electrochemical characteristics, J. Mol. Struct., 1178(2019), p. 327.

    Article  CAS  Google Scholar 

  7. S. Daikh, F.Z. Zeggai, A. Bellil, and A. Benyoucef, Chemical polymerization, characterization and electrochemical studies of PANI/ZnO doped with hydrochloric acid and/or zinc chloride: Differences between the synthesized nanocomposites, J. Phys. Chem. Solids, 121(2018), p. 78.

    Article  CAS  Google Scholar 

  8. S. Benyakhou, A. Belmokhtar, A. Zehhaf, and A. Benyoucef, Development of novel hybrid materials based on poly (2-aminophenyl disulfide)/silica gel: preparation, characterization and electrochemical studies, J. Mol. Struct., 1150(2017), p. 580.

    Article  CAS  Google Scholar 

  9. K. Rahmani and G.H. Majzoobi, An investigation on SiC volume fraction and temperature on static and dynamic behavior of Mg-SiC nanocomposite fabricated by powder metallurgy, Modares Mech. Eng., 18(2018), No. 3, p. 361.

    Google Scholar 

  10. A. Abdollahi, A. Alizadeh, and H.R. Baharvandi, Dry sliding tribological behavior and mechanical properties of Al2024-5wt%B4C nanocomposite produced by mechanical milling and hot extrusion, Mater. Des., 55(2014), p. 471.

    Article  CAS  Google Scholar 

  11. R.M. Mohanty, K. Balasubramanian, and S.K. Seshadri, Boron carbide-reinforced alumnium 1100 matrix composites: fabrication and properties, Mater. Sci. Eng. A, 498(2008), No. 1–2, p. 42.

    Article  Google Scholar 

  12. J.Z. Wang, X.H. Qu, H.Q. Yin, M.J. Yi, and X.J. Yuan, High velocity compaction of ferrous powder, Powder Technol., 192(2009), No. 1, p. 131.

    Article  CAS  Google Scholar 

  13. W.H. Gourdin, Dynamic consolidation of metal powders, Prog. Mater Sci., 30(1986), No. 1, p. 39.

    Article  CAS  Google Scholar 

  14. A.N. Faruqui, P. Manikandan, T. Sato, Y. Mitsuno, and K. Hokamoto, Mechanical milling and synthesis of Mg-SiC composites using underwater shock consolidation, Met. Mater. Int., 18(2012), No. 1, p. 157.

    Article  CAS  Google Scholar 

  15. G.H. Majzoobi, K. Rahmani, and A. Atrian, Temperature effect on mechanical and tribological characterization of Mg-SiC nanocomposite fabricated by high rate compaction, Mater. Res. Express, 5(2018), No. 1, art. No. 015046.

    Article  Google Scholar 

  16. G.H. Majzoobi, K. Rahmani, and A. Atrian, An experimental investigation into wear resistance of Mg-SiC nanocomposite produced at high rate of compaction, J. Stress Anal., 3(2018), No. 1, p. 35.

    Google Scholar 

  17. K. Rahmani, G.H. Majzoobi, and A. Atrian, A novel approach for dynamic compaction of Mg-SiC nanocomposite powder using a modified Split Hopkinson Pressure Bar, Powder Metall., 61(2018), No. 2, p. 164.

    Article  CAS  Google Scholar 

  18. Q.C. Jiang, H.Y. Wang, B.X. Ma, Y. Wang, and F. Zhao, Fabrication of B4C particulate reinforced magnesium matrix composite by powder metallurgy, J. Alloys Compd., 386(2005), No. 1–2, p. 177.

    Article  CAS  Google Scholar 

  19. M. Aydin, R. Koç, and A. Akkoyunlu, Fabrication and characterisation of Mg-nano B4C and B composites by powder metallurgy method, Adv. Mater. Process. Technol., 1(2015), No. 1–2, p. 181.

    Google Scholar 

  20. I. Aatthisugan, A.R. Rose, and D.S. Jebadurai, Mechanical and wear behaviour of AZ91D magnesium matrix hybrid composite reinforced with boron carbide and graphite, J. Magnesium Alloys, 5(2017), No. 1, p. 20.

    Article  CAS  Google Scholar 

  21. V. Kevorkijan and S.D. Škapin, Mg/B4C composites with a high volume fraction of fine ceramic reinforcement, Mater. Manuf. Processes, 24(2009), No. 12, p. 1337.

    Article  CAS  Google Scholar 

  22. Y.T. Yao, L. Jiang, G.F. Fu, and L.Q. Chen, Wear behavior and mechanism of B4C reinforced Mg-matrix composites fabricated by metal-assisted pressureless infiltration technique, Trans. Nonferrous Metal. Soc. China, 25(2015), No. 8, p. 2543.

    Article  CAS  Google Scholar 

  23. K. Rahmani, G.H. Majzoobi, and A. Atrian, Simultaneous effects of strain rate and temperature on mechanical response of fabricated Mg-SiC nanocomposite, J. Compos. Mater., 2019, art. No. 0021998319864629.

  24. G.H. Majzoobi, A. Atrian, and M.K. Pipelzadeh, Effect of densification rate on consolidation and properties of Al7075-B4C composite powder, Powder Metall., 58(2015), No. 4, p. 281.

    Article  Google Scholar 

  25. M. Tavoosi, F. Karimzadeh, M.H. Enayati, and A. Heidarpour, Bulk Al-Zn/Al2O3 nanocomposite prepared by reactive milling and hot pressing methods, J. Alloys Compd., 475(2009), No. 1–2, p. 198.

    Article  CAS  Google Scholar 

  26. A. Atrian, G.H. Majzoobi, M.H. Enayati, and H. Bakhtiari, Mechanical and microstructural characterization of Al7075/SiC nanocomposites fabricated by dynamic compaction, Int. J. Miner. Metall. Mater., 21(2014), No. 3, p. 295.

    Article  CAS  Google Scholar 

  27. G.H. Majzoobi, F. Freshteh-Saniee, S.F.Z. Khosroshahi, and H.B. Mohammadloo, Determination of materials parameters under dynamic loading. Part I: Experiments and simulations, Comput. Mater. Sci, 49(2010), No. 2, p. 192.

    Article  CAS  Google Scholar 

  28. S.F. Hassan and M. Gupta, Effect of submicron size Al2O3 particulates on microstructural and tensile properties of elemental Mg, J. Alloys Compd., 457(2008), No. 1–2, p. 244.

    Article  CAS  Google Scholar 

  29. Z.Q. Mo, Y.Z. Liu, J.J. Geng, and T. Wang, The effects of temperatures on microstructure evolution and mechanical properties of B4C-AA2024 composite strips prepared by semi-solid powder rolling, Mater. Sci. Eng. A, 652(2016), p. 305.

    Article  CAS  Google Scholar 

  30. S. Sankaranarayanan, M.K. Habibi, S. Jayalakshmi, K.J. Ai, A. Almajid, and M. Gupta, Nano-AlN particle reinforced Mg composites: Microstructural and mechanical properties, Mater. Sci. Technol., 31(2015), No. 9, p. 1122.

    Article  CAS  Google Scholar 

  31. C.T. Wei, E. Vitali, F. Jiang, S.W. Du, D.J. Benson, K.S. Vecchio, N.N. Thadhani, and M.A. Meyers, Quasi-static and dynamic response of explosively consolidated metal-aluminum powder mixtures, Acta Mater., 60(2012), No. 3, p. 1418.

    Article  CAS  Google Scholar 

  32. W.B. Eisen, B.L. Ferguson, R.M. German, R. Iacocca, P.W. Lee, D. Madan, K. Moyer, H. Sanderow, and Y. Trudel, Powder Metal Technologies and Applications, ASM International, USA, 1998.

    Google Scholar 

  33. D. Yim, W. Kim, S. Praveen, M.J. Jang, J.W. Bae, J. Moon, E. Kim, S.T. Hong, and H.S. Kim, Shock wave compaction and sintering of mechanically alloyed CoCrFeMnNi highentropy alloy powders, Mater. Sci. Eng. A, 708(2017), p. 291.

    Article  CAS  Google Scholar 

  34. R.L. Williamson, Parametric studies of dynamic powder consolidation using a particle-level numerical model, J. Appl. Phys., 68(1990), No. 3, p. 1287.

    Article  Google Scholar 

  35. M.A. Meyers, D.J. Benson, and E.A. Olevsky, Shock consolidation: microstructurally-based analysis and computational modeling, Acta Mater., 47(1999), No. 7, p. 2089.

    Article  CAS  Google Scholar 

  36. K.I. Kondo, S. Soga, A. Sawaoka, and M. Araki, Shock compaction of silicon carbide powder, J. Mater. Sci., 20(1985), No. 3, p. 1033.

    Article  CAS  Google Scholar 

  37. M.A. Meyers, A mechanism for dislocation generation in shock-wave deformation, Scripta Metall., 12(1978), No. 1, p. 21.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholam Hossein Majzoobi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majzoobi, G.H., Rahmani, K. Mechanical characterization of Mg-B4C nanocomposite fabricated at different strain rates. Int J Miner Metall Mater 27, 252–263 (2020). https://doi.org/10.1007/s12613-019-1902-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1902-x

Keywords

Navigation