Skip to main content
Log in

Temperature Dependence of Structure, Morphology and Dielectric Characterization of Gallium Phthalocyanine Chloride Discs

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The structural investigations of semiconductor gallium phthalocyanine chloride (GaPcCl) in powder form at different temperatures are presented in this paper. Fourier transform infrared spectroscopy, x-ray diffraction and scanning electron microscopy techniques were used to calculate the average crystallite size, D, the dislocation density, δ, micro-strain, the number of crystallites per unit surface area, Nc and average particle size and shape. Indeed, the alternating current (AC) conductivity of the GaPcCl disc was studied as a function of frequency and temperature. The activation energy, the type of conductivity mechanism, the real and imaginary parts of both the dielectric constant and complex electric modulus are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Kadem, E.N. Kaya, A. Hassan, M. Durmuş, and T. Basova, Sol. Energy 189, 1 (2019).

    CAS  Google Scholar 

  2. V. Mantareva, M. Durmuş, M. Aliosman, I. Stoineva, and I. Angelov, Photodiagn. Photodyn. Ther. 14, 98 (2016).

    CAS  Google Scholar 

  3. Y. Zhang and J.F. Lovell, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 9, e1420 (2017).

    Google Scholar 

  4. Y. Che, W. Yang, G. Tang, F. Dumoulin, J. Zhao, L. Liu, and U. İşci, J. Mater. Chem. C 6, 5785 (2018).

    CAS  Google Scholar 

  5. J.K.F. van Staden, Talanta 139, 75 (2015).

    Google Scholar 

  6. H.J. Wagner, J. Loutfy, and O. Hsiao, J. Mater. Sci. 17, 2781 (1982).

    CAS  Google Scholar 

  7. J. Loutfy and O. Hsiao, J. Mater. Sci. 17, 2781 (1982).

    Google Scholar 

  8. J. Garcia, A. Gonzalez, A. Gouloumis, E.M. Maya, M.D. Perez, P. Vazquez, and T. Torres, Turk. J. Chem. 22, 23 (1998).

    CAS  Google Scholar 

  9. L. Mathew and C. Menon, Adv. Mater. 7, 339 (2007).

    Google Scholar 

  10. F. Kristen, J. Riegler, and E. Hans, J. Chem. Eng. Data 57, 439 (2012).

    Google Scholar 

  11. P. Siles, T. Hahn, G. Salvan, M. Knupfer, F. Zhu, and O. Schmidt, Nanoscale 8, 8607 (2016).

    CAS  Google Scholar 

  12. N. Victor, A. Evgeny Arkivoc 1, 136 (2010).

    Google Scholar 

  13. S. Fang, K. Kohama, H. Hoshi, and Y. Maruyama, Jpn. J. Appl. Phys. 32, L1418 (1993).

    CAS  Google Scholar 

  14. G. Fatemeh and K. Juliane, J. Chem. Eng. Data 57, 439 (2012).

    Google Scholar 

  15. A. Napier and R. Collins, Phys. Stat. Sol (A) 144, 91 (1994).

    CAS  Google Scholar 

  16. T.M. Grant, N.A. Rice, L. Muccioli, F. Castet, and B.H. Lessard, ACS Appl. Electron. Mater. 1, 494 (2019).

    CAS  Google Scholar 

  17. A.K. Ray, in Meeting Abstracts (No. 25, The Electrochemical Society, 2019), p. 1245.

  18. Q. Song, T. Lin, X. Sun, B. Chu, Z. Su, H. Yang, and C.S. Lee, ACS Appl. Mater. Interfaces 10, 8909 (2018).

    CAS  Google Scholar 

  19. O.A. Melville, B.H. Lessard, and T.P. Bender, ACS Appl. Mater. Interfaces 7, 13105 (2015).

    CAS  Google Scholar 

  20. C. Zheng, D.Z. Bo, Z.M. Yang, L.Z. Yue, D.H. Liang, Z. Ye, Y.Y. Hong, and L.J. Chao, Chin. Phys. Lett. 29, 078801 (2012).

    Google Scholar 

  21. M.E. Azimaraghi, Ind. J. Pure Appl. Phys. 45, 40 (2007).

    CAS  Google Scholar 

  22. N. Papageorgiou, E. Salomon, T. Angot, J.M. Layet, L. Giovanelli, and G.L. Lay, Prog. Surf. Sci. 77, 139 (2004).

    CAS  Google Scholar 

  23. T. Tsuzuki, Y. Shirota, J. Rostaliski, and D. Meisner, Sol. Energy Mater. Sol. Cells 61, 1 (2000).

    CAS  Google Scholar 

  24. J. Kyokane, R. Aoyagi, and K. Yoshino, Synth. Met. 85, 1393 (1997).

    CAS  Google Scholar 

  25. A. Altindal, Z.Z. Özturk, S. Dabak, and Ö. Bekaroğlu, Sens. Acuators B 77, 389 (2001).

    CAS  Google Scholar 

  26. A. Fujii, Y. Ohmori, and K. Yoshino, IEEE Trans. Electron. Devices 44, 1204 (1997).

    CAS  Google Scholar 

  27. B. Ramaki, G. Guillard, and D. Mayes, Opt. Mater. 9, 240 (1998).

    Google Scholar 

  28. R. Cubbedu, G. Canti, C.D. Andrea, A. Pifferi, P. Taroni, and A. Toricelli, J. Photochem. Photobiol. B 60, 73 (2001).

    Google Scholar 

  29. I.H. Campbell, S. Rubin, T.A. Zawodeinski, J.D. Kress, R.L. Martin, D.L. Smith, N.N. Barashkov, and J.P. Ferraris, Phys. Rev. B Condens. Matter Mater. Phys. 54, 14321 (1996).

    Google Scholar 

  30. N.F. Mott and E.A. Davis, Electronic Processes in Non-crystalline Materials (Oxford: Oxford University Press, 2012).

    Google Scholar 

  31. A.M. Farid and A.E. Bekheet, Vacuum 59, 932 (2000).

    CAS  Google Scholar 

  32. H. Dong and J. Jeong, Aerosol Sci. Technol. 88, 554 (2007).

    Google Scholar 

  33. W. Ding, P. Zhang, Y. Li, H. Xia, D. Wang, and X. Tao, Chem. Phys. Chem. 16, 447 (2015).

    CAS  Google Scholar 

  34. J. Palermo and C. Grove, Am. Inst. Chem. Eng. J. 10, 351 (1964).

    CAS  Google Scholar 

  35. C. Lindenberg and M. Mazzotti, J. Cryst. Growth 311, 1178 (2009).

    CAS  Google Scholar 

  36. T. Sankarappa, M. PrashantKumar, G.B. Devida, N. Najaraja, and R. Ramakrishnareddy, Mol. Struct. 88, 308 (2008).

    Google Scholar 

  37. S. Hao, L. Sun, and J. Huang, Mater. Chem. Phys. 109, 45 (2008).

    CAS  Google Scholar 

  38. I. Yahia, N. Hegab, A. Shakra, and A. AL-Ribaty, Physica B 407, 2476 (2012).

    CAS  Google Scholar 

  39. M. EL-Nahass, A. Frag, and E. Elesh, Vacuum 99, 153 (2014).

    CAS  Google Scholar 

  40. K. Mahato, A. LoDutta, and T. Inha, Physics B 406, 2703 (2011).

    CAS  Google Scholar 

  41. R. Neagu, E. Neagu, and P. Pississ, J. Appl. Phys. 88, 6669 (2002).

    Google Scholar 

  42. J.M. Stevels, Handbuch der Physik, in Flugge (ed.) (Springer, Berlin, 1975), p. 350.

  43. S. Mahendia, A.K. Tomar, and S. Kumar, J. Alloy. Compd. 508, 406 (2010).

    CAS  Google Scholar 

  44. S. Elliott, Physics of Amorphous Materials (London: Longman, 1983).

    Google Scholar 

  45. H. Zeyada, F. El-Taweel, M. El-Nahass, and M. El-Shabaan, Chin. Phys. B 25, 077701 (2016).

    Google Scholar 

  46. E. El-Menyawy, H. Zeyada, and M. El-Nahass, Solid State Sci. 12, 2182 (2010).

    CAS  Google Scholar 

  47. H. Zeyadaa and M. El-Nahass, Appl. Surf. Sci. 254, 1852 (2008).

    Google Scholar 

  48. S.A. Mansour, I. Yahia, and G.B. Sakr, Solid State Commun. 150, 1386 (2010).

    CAS  Google Scholar 

  49. A. Tabib, N. Sdiri, H. Elhouichet, and M. Férid, J. Alloy. Compd. 622, 687 (2015).

    CAS  Google Scholar 

  50. M.S. Meikhail, A.H. Oraby, M.M. El-Nahass, H.M. Zeyada, and A.A. Al Muntaser, Phys. B Condens. Matter 539, 1 (2018).

    CAS  Google Scholar 

  51. A. Oueslati, F. Hlel, K. Guidara, and M. Gargouri, J. Alloys Compd. 492, 508 (2010).

    CAS  Google Scholar 

  52. H. Smaoui, L.E.L. Mir, H. Guermazi, S. Agnel, and A. Toureille, J. Alloys Compd. 477, 316 (2009).

    CAS  Google Scholar 

  53. A.A. Dakhel, Microelectron. Reliab. 52, 1050 (2012).

    CAS  Google Scholar 

  54. M. Prabu and S. Selvasekarapandian, Mater. Chem. Phys. 134, 366 (2012).

    CAS  Google Scholar 

  55. P. Macedo, C. Monginihan, and R. Bose, Phys. Chem. Glasses 13, 171 (1972).

    CAS  Google Scholar 

  56. F. Howell, R. Bose, P. Maced, and C. Moynihan, J. Phys. Chem. 78, 639 (1974).

    CAS  Google Scholar 

  57. S. Hajra, S. Sahoo, T. Mishra, M. De, P.K. Rout, and R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 29, 7876 (2018).

    CAS  Google Scholar 

  58. P.M.V. Almeida, C.B. Gozzo, E.H.N.S. Thaines, A.J.M. Sales, R.G. Freitas, A.J. Terezo, and M.M. Costa, Mater. Chem. Phys. 205, 72 (2018).

    CAS  Google Scholar 

  59. M. Hutchins, O. ALkhair, M. ELnahass, and K. Abdel Hady, Non Cryst Solid 353, 4137 (2007).

    CAS  Google Scholar 

  60. A. Mogus, B. Santic, D. Day, and C. Ray, Non Cryst Solid 351, 3235 (2005).

    Google Scholar 

  61. A. El-ghandour, O. Hameed, and S.A. Obayya, J. Mater. Sci. Mater. Electron. 29, 17750 (2018).

    CAS  Google Scholar 

  62. M.M. EL-Nahass, A.F. EL-Deeb, and F. Abd-El-Salam, Org. Electron. Physics Mater. Appl. 7, 261 (2006).

    CAS  Google Scholar 

  63. M.M. El-Nahass, A.M. Farid, K.F.A. El-Rahman, and H.A.M. Ali, Phys. B Condens. Matter. 403, 2331 (2008).

    CAS  Google Scholar 

  64. I.M. Soliman, M.M. El-Nahass, and Y. Mansour, Solid State Commun. 225, 17 (2016).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud S. Dawood.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elesh, E., Mohamed, Z. & Dawood, M.S. Temperature Dependence of Structure, Morphology and Dielectric Characterization of Gallium Phthalocyanine Chloride Discs. J. Electron. Mater. 49, 2633–2641 (2020). https://doi.org/10.1007/s11664-020-07971-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-07971-9

Keywords

Navigation