Skip to main content

Advertisement

Log in

Effects of Ultrafine Bismuth Powder on the Properties of Zinc Electrodes in Zinc-Air Batteries

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Ultrafine spherical zinc powder prepared by direct-current arc plasma evaporation increased the capacity and life of zinc-air batteries. To decelerate the corrosion of the ultrafine zinc powder and improve the charge–discharge performance of the zinc-air batteries, we added different amounts of ultrafine bismuth powder to a zinc electrode. The hydrogen evolution rate of the Zn-Bi electrode and the properties of zinc-air batteries were investigated by hydrogen evolution experiments and electrochemical performance tests. The corrosion inhibition mechanism of the newly added bismuth powder on the zinc electrode was studied via x-ray diffraction, scanning electron microscopy and x-ray photoelectron spectroscopy. The results show that when the amount of the ultrafine bismuth powder was 1.5 wt.% of the zinc powder, the anticorrosion efficiency of the Zn-Bi electrode was the highest, reaching 53.8%. After the battery assembly, the Zn-Bi electrode reached a capacity retention rate of 84.6% and had a 21.7% higher specific capacity than that of a blank zinc electrode (419 mA h g−1 versus 344.3 mA h g−1) after 60 cycles. The ultrafine bismuth powder improved the nucleation efficiency, reduced the corrosion current, increased the polarization resistance threefold, and inhibited the formation of dendrites and corrosion, thereby increasing the battery specific capacity and cycle efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Suren and S. Kheawhom, J. Electrochem. Soc. 163, 846 (2016).

    Article  Google Scholar 

  2. M.N. Masri and A.A. Mohamad, J. Electrochem. Soc. 160, 715 (2013).

    Article  Google Scholar 

  3. X.Y. Wen, X.W. Lu, K.X. Xiang, L. Xiao, H.Y. Liao, W.H. Chen, W. Zhou, and H. Chen, J. Colloid Interface Sci. 544, 711 (2019).

    Article  Google Scholar 

  4. M. Schmid and M. Willert-Porada, Electrochim. Acta 260, 246 (2018).

    Article  CAS  Google Scholar 

  5. E. Davari and D.G. Ivey, J. Appl. Electrochem. 47, 815 (2017).

    Article  CAS  Google Scholar 

  6. K. Lopez, G. Park, H.J. Sun, J.C. An, S. Eom, and J. Shim, J. Appl. Electrochem. 45, 313 (2015).

    Article  CAS  Google Scholar 

  7. Z. Li, J.J. Huang, Z.Z. Zhang, F.X. Zhao, and Y. Wu, J. Mater. Sci. Eng. B 229, 6 (2018).

    Article  CAS  Google Scholar 

  8. A. Nakata, H. Murayama, K. Fukuda, T. Yamane, H. Arai, T. Hirai, Y. Uchimoto, J. Yamaki, and Z. Ogumi, Electrochim. Acta 166, 82 (2015).

    Article  CAS  Google Scholar 

  9. M. Hilder, B. Winther-Jensen, and N.B. Clark, Electrochim. Acta 69, 308 (2012).

    Article  CAS  Google Scholar 

  10. H.Y. Liao, H. Chen, F.L. Zhou, Z.Z. Zhang, and H. Chen, J. Power Sources 435, 226748 (2019).

    Article  CAS  Google Scholar 

  11. Y. He, K.X. Xiang, Y.F. Wang, W. Zhou, Y.R. Zhu, L. Xiao, W.H. Chen, X.H. Chen, H. Chen, H. Cheng, and Z.G. Lu, Carbon 154, 330 (2019).

    Article  CAS  Google Scholar 

  12. D. Schroeder, N.N. Borker, M. Koenig, and U. Krewer, J. Appl. Electrochem. 45, 427 (2015).

    Article  CAS  Google Scholar 

  13. M. Pino, C. Cuadrado, J. Chacon, P. Rodriguez, E. Fatas, and P. Ocon, J. Appl. Electrochem. 44, 1371 (2014).

    Article  CAS  Google Scholar 

  14. W.G. Gan, D.B. Zhou, J. Zhao, and L. Zhou, J. Appl. Electrochem. 45, 913 (2015).

    Article  CAS  Google Scholar 

  15. H. Kim, E. Kim, S. Kim, and H. Shin, J. Appl. Electrochem. 45, 335 (2015).

    Article  CAS  Google Scholar 

  16. K. Miyazaki, A. Nakata, Y. Lee, T. Fukutsuka, and T. Abe, J. Appl. Electrochem. 46, 1067 (2016).

    Article  CAS  Google Scholar 

  17. J.L. Ortiz-Aparicio, Y. Meas, G. Trejo, R. Ortega, T.W. Chapman, and E. Chainet, J. Appl. Electrochem. 43, 289 (2013).

    Article  CAS  Google Scholar 

  18. C. Mele and B. Bozzini, J. Appl. Electrochem. 45, 43 (2015).

    Article  CAS  Google Scholar 

  19. Y. Xiao, J.C. Shi, F.X. Zhao, Z.Z. Zhang, and W. He, J. Electrochem. Soc. 165, A47 (2018).

    Article  CAS  Google Scholar 

  20. C. Zhang, J.M. Wang, L. Zhang, J.Q. Zhang, and C.N. Cao, J. Appl. Electrochem. 31, 1049 (2001).

    Article  CAS  Google Scholar 

  21. S.M. Lee, Y.J. Kim, S.W. Eom, N.S. Choi, K.W. Kim, and S.B. Cho, J. Power Sources 227, 177 (2013).

    Article  CAS  Google Scholar 

  22. J.L. Pan, Y.H. Wen, J. Cheng, J.Q. Pan, Z.L. Bai, and Y.S. Yang, J. Appl. Electrochem. 43, 541 (2013).

    Article  CAS  Google Scholar 

  23. Y. He, K.X. Xiang, W. Zhou, Y.R. Zhu, X.H. Chen, and H. Chen, Chem. Eng. J. 353, 666 (2018).

    Article  CAS  Google Scholar 

  24. D.V. Malakhov, CALPHAD: Comput. Coupling Phase Diagr. Thermochem. 24, 1 (2000).

    Article  CAS  Google Scholar 

  25. Y. Kurata, J. Nucl. Mater. 448, 239 (2014).

    Article  CAS  Google Scholar 

  26. X.J. Wang, Q.S. Zhu, B. Liu, N. Liu, and F.J. Wang, J. Mater. Sci.: Mater. Electron. 25, 2297 (2014).

    CAS  Google Scholar 

  27. S. Das, A. Ramakrishnan, M. Rudra, K.H. Chen, T.P. Sinha, D.K. Misra, and R.C. Mallik, J. Electron. Mater. 48, 3631 (2019).

    Article  CAS  Google Scholar 

  28. C.F. Shi, K.X. Xiang, Y.R. Zhu, X.H. Chen, W. Zhou, and H. Chen, Electrochim. Acta 246, 1088 (2017).

    Article  CAS  Google Scholar 

  29. J.Y. Xia, M.T. Tang, C. Chen, S.M. Jin, and Y.M. Chen, Trans. Nonferrous Met. Soc. China 22, 2289 (2012).

    Article  CAS  Google Scholar 

  30. N. Junker, M. Schneider, and A. Michaelis, Mater. Corros. 68, 1389 (2017).

    Article  CAS  Google Scholar 

  31. F. Rosalbino, R. Carlini, G. Zanicchi, and G. Scavino, J. Alloy. Compd. 567, 26 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Jiangsu University Advantage Discipline Construction Project (Jiangsu Gov. Office issued 2018-10), the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP, PPZY2015B128) and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangxia Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Da, Y., Zhao, F., Shi, J. et al. Effects of Ultrafine Bismuth Powder on the Properties of Zinc Electrodes in Zinc-Air Batteries. J. Electron. Mater. 49, 2479–2490 (2020). https://doi.org/10.1007/s11664-020-07978-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-07978-2

Keywords

Navigation