Skip to main content
Log in

Continuous flow aminolysis under high temperature and pressure

  • Communications
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

Under continuous processing conditions, C-N bond formation via SN2 and SNAr substitutions by amines can be an effective preparative method, especially when volatile amines are used under high pressure and temperature. We have demonstrated SN2 substitution of a 2° mesylate with ammonia and opening of an epoxide with benzylamine, and SNAr substitution of a heteroaryl chloride with aqueous ammonia on multi-kg scales. The homogeneous continuous processes offered better process control, higher efficiency, and comparable or superior reaction profiles and yields to batch conditions.

Continuous flow aminolysis under high temperature and pressure

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Scheme 4
Fig. 4
Fig. 5
Fig. 6
Scheme 5
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Ullmann F (1903). Ber Dtsch Chem Ges 36:2382–2384

    Article  Google Scholar 

  2. Goldberg I (1906). Ber Dtsch Chem Ges 39:1691–1692

    Article  Google Scholar 

  3. Reactions, mechanisms and structure, advanced organic chemistry, March, J. Wiley-Interscience. 5th edn, p 411

  4. He H, Dong S, Chen Y, Yang Y, Le Y, Bao W (2012). Tetrahedron 68:3112–3116

    Article  CAS  Google Scholar 

  5. Guru MM, Punniyamurthy T (2012). J Org Chem 77:5063–5073

    Article  CAS  Google Scholar 

  6. Stevenson AC (1948). Ind Eng Chem:1584–1589

  7. Plutschack MB, Pieber B, Gilmore K, Seeberger PH (2017). Chem Rev 117:11796–11893

    Article  CAS  Google Scholar 

  8. Akwi FM, Watts P (2018). Chem Commun 54:13894–13928

    Article  CAS  Google Scholar 

  9. Gutmann B, Cantillo D, Kappe CO (2015). Angew Chem Int Ed 54:6688–6728

    Article  CAS  Google Scholar 

  10. Jensen KF (2017). AIChE J 63:858–869

    Article  CAS  Google Scholar 

  11. Gololobov YG, Zhmurova IN, Kasukhin LF (1981). Tetrahedron 37:437–472

    Article  CAS  Google Scholar 

  12. Li B, Magee TV, Buzon RA, Widlicka DW, Bill DR, Brandt T, Cao X, Coutant M, Dou H, Granskog K, Flanagan ME, Hayward CM, Li B, Liu F, Liu W, Nguyen TT, Raggon JW, Rose P, Rainville J, Reilly UD, Shen Y, Sun J, Wilcox GE (2012). Org Process Res Dev 16:788–797

    Article  CAS  Google Scholar 

  13. It is possible to increase the limits with proper setups and valves but would increase the safety risk and require extensive safety reviews per EHS protocols.

  14. Anderson N (2001). Org Process Res Dev 5:613–621

    Article  CAS  Google Scholar 

  15. Kockmann N, Gottsponer M, Zimmermann B, Roberge DM (2008). Chem. Eur. J. 14:7470–7477

    Article  CAS  Google Scholar 

  16. Hessel V (2009). Chem Eng Technol 32:1655–1681

    Article  CAS  Google Scholar 

  17. Anderson N (2012). Org Process Res Dev 16:852–869

    Article  CAS  Google Scholar 

  18. Teoh SK, Rathi C, Sharratt P (2016). Org Process Res Dev 20:414–431

    Article  CAS  Google Scholar 

  19. Porta R, Benaglia M, Puglisi A (2016). Org Process Res Dev 20:2–25

    Article  CAS  Google Scholar 

  20. Movsisyan M, Delbeke EIP, Berk JK, Battilocchio C, Ley SV, Stevens V (2016). Chem Soc Rev 45:4892–4928

    Article  CAS  Google Scholar 

  21. Guo S, Dai Z, Hua J, Yang Z, Fang Z, Guo K (2017). React Chem Eng 2:650–655

    Article  CAS  Google Scholar 

  22. Van Alsten JG, Reeder LM, Stanchina CL, Knoechel DJ (2008). Org Process Res Dev 12:989–994

    Article  Google Scholar 

  23. Kulkarni AA, Kalyani VS, Joshi RA, Josh RR (2009). Org Process Res Dev 13:999–1002

    Article  CAS  Google Scholar 

  24. Baumann M, Baxendale IR, Martin LJ, Ley SV (2009). Tetrahedron 65:6611–6625

    Article  CAS  Google Scholar 

  25. Baxendale IR, Ley SV, Mansfield AC, Smith CD (2009). Angew Chem Int Ed 48:4017–4021

    Article  CAS  Google Scholar 

  26. Li B, Widlicka D, Boucher S, Hayward CM, Lucas J, Murray J, O’Neil B, Pfisterer D, Samp S, Van Alsten J, Xiang Y, Young J (2012). Org Process Res Dev 16:2031–2035

    Article  CAS  Google Scholar 

  27. Kockmann N, Thenée P, Fleischer-Trebes C, Laudadio GT, Noël T (2017). React Chem Eng 2:258–280

    Article  CAS  Google Scholar 

  28. Hessel V, Kralisch D, Kockmann N, Noël T, Wang Q (2013). ChemSusChem. 6:746–789

    Article  CAS  Google Scholar 

  29. Audubert C, Bouchard A, Mathieu G, Lebel H (2018). J Org Chem 83:14203–14209

    Article  CAS  Google Scholar 

  30. Residence time (τ) is a nominal residence time as defined by the volume, V, of the flow reactor in mL, divided by the total flow rate, F, in mL/min, unless noted otherwise.

  31. Li B, Li R, Dorff P, McWilliams JC, Guinn RM, Guinness SM, Han L, Wang K, Yu S (2019). J Org Chem 84:4846–4855

    Article  CAS  Google Scholar 

  32. Kohl TM, Hornung CH, Tsanaktsidis J (2015). Molecules 20:17860–17871

    Article  CAS  Google Scholar 

  33. Xue C, Li J, Lee JP, Zhang P, Wu J (2019). React Chem Eng. 4:346–3450

    Article  CAS  Google Scholar 

  34. Brzozowski M, O’Brien M, Ley SV, Polyzos A (2015). Acc Chem Res 48:349–362

    Article  CAS  Google Scholar 

  35. Zhang C, Pei H, He J, Zhu J, Li W, Niu T, Xiang M, Chen L (2019). Eur J Med Chem 169:121–143

    Article  CAS  Google Scholar 

  36. Wang Y, Li L, Fan J, Dai Y, Jiang A, Geng M, Ai J, Duan W (2018). J Med Chem 61:9085–9104

    Article  CAS  Google Scholar 

  37. He L, Pei H, Zhang C, Shao M, Li D, Tang M, Wang T, Chen X, Xiang M, Chen L (2018). Eur J Med Chem 145:96–112

    Article  CAS  Google Scholar 

  38. Under atmospheric pressure at the reaction temperature, a large amount of NH3 off-gas was expected, which would lower the concentration of NH3 in the reaction and slow down the reaction, and require the use of an acid scrubber to prevent the off-gas to be released to the environment

  39. Although rupture disks and/or pressure relief valves were provided on the autoclave, the handling of a large volume of volatile amines is still a process safety concern

  40. May SA, Johnson MD, Braden TM, Calvin JR, Haeberle BD, Jines AR, Miller RD, Plocharczyk EF, Rener GA, Richey RN, Schmid CR, Vaid RK, Yu H (2012). Org Process Res Dev 16:982–1002

    Article  CAS  Google Scholar 

  41. The scale up was carried out at Asymchem, Tianjin, China under the same reaction conditions

  42. Bedore MW, Zaborenko N, Jensen KF, Jamison TF (2010). Org Process Res Dev 14:432–440

    Article  CAS  Google Scholar 

  43. Nobuta T, Xiao G, Ghislieri D, Gilmore K, Seeberger PH (2015). Chem Commun 51:15133–15,136

    Article  CAS  Google Scholar 

  44. Kim HY, Talukdar A, Cushman M (2006). Org Lett 8:1085–1087

    Article  CAS  Google Scholar 

  45. Azizi N, Saidi MR (2005). Org Lett 7:3649–3651

    Article  CAS  Google Scholar 

  46. Taylor R, Krishna R (1993) Multicomponent mass transfer. Wiley

  47. Gorban AN, Sargsyan HP, Wahab HA (2011). Math Model Nat Phenom 6:184–262

    Article  Google Scholar 

  48. Smith WF (2004) Foundations of materials science and engineering3rd edn. McGraw-Hill

  49. https://www.omegascientific.com.sg/index.php/products/reactors/segmented-flow-chemistry-system. Accessed on Oct. 2, 2019.

  50. The solvent miscibility may change under high temperature, although we have not experienced any issues of carrier solvent miscibility with the spacer solvent

  51. The carrier solvent system and inert spacer may have different volumetric expansion coefficients with the temperature. However, it is not expected to affect the segmented flow provided they are immiscible

Download references

Acknowledgements

We thank the support of Mr. Remzi Duzguner and Robert A. Giusto for carrying out DSC and TSu process safety testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Bader, S., Guinness, S.M. et al. Continuous flow aminolysis under high temperature and pressure. J Flow Chem 10, 145–156 (2020). https://doi.org/10.1007/s41981-019-00049-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-019-00049-6

Keywords

Navigation