Skip to main content

Advertisement

Log in

Identification and characterization of two fatty acid elongases in Lipomyces starkeyi

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The oleaginous yeast Lipomyces starkeyi is a potential cost-effective source for the production of microbial lipids. Fatty acid elongases have vital roles in the syntheses of long-chain fatty acids. In this study, two genes encoding fatty acid elongases of L. starkeyi, LsELO1, and LsELO2 were identified and characterized. Heterologous expression of these genes in Saccharomyces cerevisiae revealed that LsElo1 is involved in the production of saturated long-chain fatty acids with 24 carbon atoms (C24:0) and that LsElo2 is involved in the conversion of C16 fatty acids to C18 fatty acids. In addition, both LsElo1 and LsElo2 were able to elongate polyunsaturated fatty acids. LsElo1 elongated linoleic acid (C18:2) to eicosadienoic acid (C20:2), and LsElo2 elongated α-linolenic acid (C18:3) to eicosatrienoic acid (C20:3). Overexpression of LsElo2 in L. starkeyi caused a reduction in C16 fatty acids, such as palmitic and palmitoleic acids, and an accumulation of C18 fatty acids such as oleic and linoleic acids. Our findings have the potential to contribute to the remodeling of fatty acid composition and the production of polyunsaturated long-chain fatty acids in oleaginous yeasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ageitos JM, Vallejo JA, Veiga-Crespo P, Villa TG (2011) Oily yeasts as oleaginous cell factories. Appl Microbiol Biotechnol 90:1219–1227

    Article  CAS  Google Scholar 

  • Ballweg and Emst (2017) Control of membrane fluidity: the OLE pathway in focus. 398:215–228

  • Chellappa R, Kandasamy P, Oh CS, Jiang Y, Vemula M, Martin CE (2001) The membrane proteins, Spt23p and Mga2p, play distinct roles in the activation of Saccharomyces cerevisiae OLE1 gene expression. Fatty acid-mediated regulation of Mga2p activity is independent of its proteolytic processing into a soluble transcription activator. J Biol Chem 276:43548–43556

    Article  CAS  Google Scholar 

  • Das T, Thurmond JM, Bobik E, Leonard AE, Parker-Barnes JM, Huang YS, Mukerji P (2000) Polyunsaturated fatty acid-specific elongation enzymes. Biochem Soc Trans 28:658–660

    Article  CAS  Google Scholar 

  • Domergue F, Lerchl J, Zähringer U, Heinz E (2002) Cloning and functional characterization of Phaeodactylum tricornutum front-end desaturases involved in eicosapentaenoic acid biosynthesis. Eur J Biochem 269:4105–4113

    Article  CAS  Google Scholar 

  • Donot F, Fontana A, Baccou JC, Strub C, Schorr-Galindo S (2014) Single cell oils (SCOs) from oleaginous yeasts and moulds: production and genetics. Biomass Bioenergy 68:135–150

    Article  CAS  Google Scholar 

  • Fillet S, Ronchel C, Callejo C, Fajardo MJ, Moralejo H, Adrio JL (2017) Engineering Rhodosporidium toruloides for the production of very long-chain monounsaturated fatty acid-rich oils. Appl Microbiol Biotechnol 101:7271–7280

    Article  CAS  Google Scholar 

  • Fujiwara D, Yoshimoto H, Sone H, Harashima S, Tamai Y (1998) Transcriptional co-regulation of Saccharomyces cerevisiae alcohol acetyltransferase gene, ATF1 and Δ-9 fatty acid desaturase gene, OLE1 by unsaturated fatty acids. Yeast 14:711–721

    Article  CAS  Google Scholar 

  • Jiang M, Guo B, Wan X, Gong Y, Zhang Y, Hu C (2014) Isolation and characterization of the diatom Phaeodactylum Δ5-elongase gene for transgenic LC-PUFA production in Pichia pastoris. Mar Drugs 12:1317–1334

    Article  Google Scholar 

  • Juanssilfero AB, Kahar P, Amza RL, Miyamoto N, Otsuka H, Matsumoto H, Kihira C, Thontowi A, Ogino C, Prasetya B, Kondo A (2018) Effect of inoculum size on single-cell oil production from glucose and xylose using oleaginous yeast Lipomyces starkeyi. J Biosci Bioeng 125:695–702

    Article  CAS  Google Scholar 

  • Kainou K, Kamisaka Y, Kimura K, Uemura H (2006) Isolation of Δ12 and ω3-fatty acid desaturase genes from the yeast Kluyveromyces lactis and their heterologous expression to produce linoleic and α-linolenic acids in Saccharomyces cerevisiae. Yeast 23:605–612

    Article  CAS  Google Scholar 

  • Kamisaka Y, Kimura K, Uemura H, Shibakami M (2010) Activation of diacylglycerol acyltransferase expressed in Saccharomyces cerevisiae: overexpression of Dga1p lacking the N-terminal region in the Δsnf2 disruptant produces a significant increase in its enzyme activity. Appl Microbiol Biotechnol 88:105–115

    Article  CAS  Google Scholar 

  • Kamisaka Y, Kimura K, Uemura H, Yamaoka M (2013) Overexpression of the active diacylglycerol acyltransferase variant transforms Saccharomyces cerevisiae into an oleaginous yeast. Appl Microbiol Biotechnol 97:7345–7355

    Article  CAS  Google Scholar 

  • Kobayashi SD, Nagiec MM (2003) Ceramide/long-chain base phosphate rheostat in Saccharomyces cerevisiae: regulation of ceramide synthesis by Elo3p and Cka2p. Eukaryot Cell 2:284–294

    Article  CAS  Google Scholar 

  • Kosa M, Ragauskas AJ (2011) Lipids from heterotrophic microbes: advances in metabolism research. Trends Biotechnol 29:53–61

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Matsuzawa T, Maehara T, Kamisaka Y, Ara S, Takaku H, Yaoi K (2018) Identification and characterization of Δ12 and Δ12/Δ15 bifunctional fatty acid desaturases in the oleaginous yeast Lipomyces starkeyi. Appl Microbiol Biotechnol 102:8817–8826

    Article  CAS  Google Scholar 

  • Möller S, Croning MD, Apweiler R (2001) Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17:646–653

    Article  Google Scholar 

  • Nakagawa Y, Sakumoto N, Kaneko Y, Harashima S (2002) Mga2p is a putative sensor for low temperature and oxygen to induce OLE1 transcription in Saccharomyces cerevisiae. Biochem Biophys Res Commun 291:707–713

    Article  CAS  Google Scholar 

  • Nakagawa Y, Ueda A, Kaneko Y, Harashima S (2003) Merging of multiple signals regulating Δ9 fatty acid desaturase gene transcription in Saccharomyces cerevisiae. Mol Gen Genomics 269:370–380

    Article  CAS  Google Scholar 

  • Oguro Y, Yamazaki H, Ara S, Shida Y, Ogasawara W, Takagi M, Takaku H (2017) Efficient gene targeting in non-homologous end-joining-deficient Lipomyces starkeyi strains. Curr Genet 63:751–763

    Article  CAS  Google Scholar 

  • Oh CS, Toke DA, Mandala S, Martin CE (1997) ELO2 and ELO3, homologues of the Saccharomyces cerevisiae ELO1 gene, function in fatty acid elongation and are required for sphingolipid formation. J Biol Chem 272:17376–17384

    Article  CAS  Google Scholar 

  • Parker-Barnes JM, Das T, Bobik E, Leonard AE, Thurmond JM, Chaung LT, Huang YS, Mukerji P (2000) Identification and characterization of an enzyme involved in the elongation of n-6 and n-3 polyunsaturated fatty acids. Proc Natl Acad Sci U S A 97:8284–8289

    Article  CAS  Google Scholar 

  • Prasitchoke P, Kaneko Y, Sugiyama M, Bamba T, Fukusaki E, Kobayashi A, Harashima S (2007) Functional analysis of very long-chain fatty acid elongase gene, HpELO2, in the methylotrophic yeast Hansenula polymorpha. Appl Microbiol Biotechnol 76:417–427

    Article  CAS  Google Scholar 

  • Riley R, Haridas S, Wolfe KH, Lopes MR, Hittinger CT, Göker M, Salamov AA, Wisecaver JH, Long TM, Calvey CH, Aerts AL, Barry KW, Choi C, Clum A, Coughlan AY, Deshpande S, Douglass AP, Hanson SJ, Klenk HP, LaButti KM, Lapidus A, Lindquist EA, Lipzen AM, Meier-Kolthoff JP, Ohm RA, Otillar RP, Pangilinan JL, Peng Y, Rokas A, Rosa CA, Scheuner C, Sibirny AA, Slot JC, Stielow JB, Sun H, Kurtzman CP, Blackwell M, Grigoriev IV, Jeffries TW (2016) Comparative genomics of biotechologically important yeasts. Proc Natl Acad Sci U S A 113:9882–9887

    Article  CAS  Google Scholar 

  • Rössler H, Rieck C, Delong T, Hoja U, Schweizer E (2003) Functional differentiation and selective inactivation of multiple Saccharomyces cerevisiae genes involved in very-long-chain fatty acid synthesis. Mol Gen Genomics 269:290–298

    Article  Google Scholar 

  • Schneiter R, Tatzer V, Gogg G, Leitner E, Kohlwein SD (2000) Elo1p-dependent carboxy-terminal elongation of C14:1Δ9 to C16:1Δ11 fatty acids in Saccharomyces cerevisiae. J Bacteriol 182:3655–3660

    Article  CAS  Google Scholar 

  • Stukey JE, McDonough VM, Martin CE (1990) The OLE1 gene of Saccharomyces cerevisiae encodes the Δ9 fatty acid desaturase and can be functionally replaced by the rat stearoyl-CoA desaturase gene. J Biol Chem 265:20144–20149

    CAS  PubMed  Google Scholar 

  • Sutanto S, Zullaikah S, Tran-Nguyen PL, Ismadji S, Ju YH (2018) Lipomyces starkeyi : its current status as a potential oil producer. Fuel Process Technol 177:39–55

    Article  CAS  Google Scholar 

  • Toke DA, Martin CE (1996) Isolation and characterization of a gene affecting fatty acid elongation in Saccharomyces cerevisiae. J Biol Chem 271:18413–18422

    Article  CAS  Google Scholar 

  • Yamazaki H, Kobayashi S, Ebina S, Abe S, Ara S, Shida Y, Ogasawara W, Yaoi K, Araki H, Takaku H (2019) Highly selective isolation and characterization of Lipomyces starkeyi mutants with increased production of triacylglycerol. Appl Microbiol Biotechnol 103:6297–6308

    Article  CAS  Google Scholar 

  • Zimmermann C, Santos A, Gable K, Epstein S, Gururaj C, Chymkowitch P, Pultz D, Rødkær SV, Clay L, Bjørås M, Barral Y, Chang A, Færgeman NJ, Dunn TM, Riezman H, Enserink JM (2013) TORC1 inhibits GSK3-mediated Elo2 phosphorylation to regulate very long chain fatty acid synthesis and autophagy. Cell Rep 27:1036–1046

    Article  Google Scholar 

Download references

Funding

This study was supported by the New Energy and Industrial Technology Development Organization (NEDO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuro Yaoi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuzawa, T., Kamisaka, Y., Maehara, T. et al. Identification and characterization of two fatty acid elongases in Lipomyces starkeyi. Appl Microbiol Biotechnol 104, 2537–2544 (2020). https://doi.org/10.1007/s00253-020-10401-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-10401-9

Keywords

Navigation