Skip to main content
Log in

Role of Zinc Oxide Nanoparticles in Countering Negative Effects Generated by Cadmium in Lycopersicon esculentum

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Nanotechnology now plays a revolutionary role in many applications; nanomaterials have experienced significant importance in both basic and applied sciences as well as in bio-nanotechnology. Zinc oxide nanoparticles (ZnO-NPs) have become one of the most important metal oxide NPs in biological applications due to their beneficial impacts. The purpose of this study was to explore the effects of ZnO-NPs in reducing Cd toxicity by studying the growth, photosynthesis reactions, antioxidant system, oxidative stress, and protein content in Lycopersicon esculentum (tomato). ZnO-NPs induced an upregulation of antioxidative enzymes which protect the photosynthetic apparatus in plants. Seeds of tomato were sown to create nursery. At 20 days after sowing (DAS), seedlings were transferred to soil pots. Varied concentrations (0.4, 0.6 or 0.8 mM) of Cd were applied to the soil after 24 and 25 DAS. Zinc (Zn; 50 mg/L) and ZnO-NPs (50 mg/L) treatments were given continuously for 5 days from 31 to 35 DAS and sampling took place at 45 DAS. The results indicate that a Cd-generated oxidative burst in the form of elevated hydrogen peroxide (H2O2) levels resulted in a decline in cell viability through enhanced activity of the antioxidant system and proline content; the data increased on follow-up treatment with ZnO-NPs. Foliar application of ZnO-NPs significantly enhanced plant height, fresh, and dry weight of plant, leaf area, SPAD chlorophyll, photosynthetic attributes, i.e., net photosynthetic rate (PN), transpiration rate (E), internal CO2 concentration (Ci), and stomatal conductance (gs). Application of ZnO-NPs reduced the adverse effects generated by Cd and increased protein content, activities of nitrate reductase and carbonic anhydrase over the control in both stressed and non-stressed plants. Additionally, microscopic studies showed a marked increase in stomatal aperture after ZnO-NPs treatment in the presence or absence of Cd. This was associated with decrease in malondialdehyde and superoxide radical (O2) levels. The present study suggests that ZnO-NPs can be effectively used to reduce the toxicity of Cd in tomato plants and may also be suitable for testing on other crop species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbas T, Rizwan M, Ali S, Rehman MZ, Qayyum MF, Abbas F, Ok YS (2017) Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination. Ecotoxicol Environ Saf 140:37–47

    CAS  PubMed  Google Scholar 

  • Ali B, Gill RA, Yang S, Gill MB, Farooq MA, Liu D, Daud MK, Ali S, Zhou W (2015) Regulation of cadmium-induced proteomic and metabolic changes by 5- aminolevulinic acid in leaves of Brassica napus L. PLoS ONE 10:1–23

    Google Scholar 

  • Andre CM, Larondelle Y, Evers D (2010) Dietary antioxidants and oxidative stress from a human and plant perspective: a review. Curr Nutri Food Sci 6:2–12

    CAS  Google Scholar 

  • Auld DS (2001) Zinc coordination sphere in biochemical zinc sites. Biomet 14:271–313

    CAS  Google Scholar 

  • Balestrasse KB, Benavides MP, Gallego SM, Tomaro ML (2003) Effect of cadmium stress on nitrogen metabolism in nodules and roots of soybean plants. Funct Plant Biol 30:57–64

    CAS  PubMed  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Sci 39:205–207

    CAS  Google Scholar 

  • Baycu G, Gevrek-Kurum N, Moustaka J, Csatari I, Rognes SE, Moustakas M (2017) Cadmium-zinc accumulation and photosystem II responses of Noccaea caerulescens to Cd and Zn exposure. Environ Sci Pollut Res 24:2840–2850

    CAS  Google Scholar 

  • Beecher GR (1998) Nutrient content of tomatoes and tomato products. Proc Soc Exp Biol Med. 218(2):98–100

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702

    CAS  PubMed  Google Scholar 

  • Burman U, Saini M, Kumar P (2013) Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicol Environ Chem 95(4):605–612

    CAS  Google Scholar 

  • Campbell WH (1999) Nitrate reductase structure, function and regulation: bridging the gap between biochemistry and physiology. Annu Rev Plant Physiol Mol Biol 50:277–303

    CAS  Google Scholar 

  • Dubchak S, Ogar A, Mietelski JW, Turnau K (2010) Influence of silver and titanium nanoparticles on arbuscular mycorrhiza colonization and accumulation of radiocaesium in Helianthus annuus. Span J Agric Res 8:103–108

    Google Scholar 

  • Dwivedi RS, Randhawa NS (1974) Evaluation of rapid test for hidden hunger of zinc in plants. Plant Soil 40:445–451

    CAS  Google Scholar 

  • Ekmekci Y, Tanyolac D, Ayhan B (2008) Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. J Plant Physiol 165(6):600–611

    CAS  PubMed  Google Scholar 

  • Faizan M, Faraz A, Yusuf M, Khan ST, Hayat S (2018) Zinc oxide nanoparticles-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica 56(2):678–686

    CAS  Google Scholar 

  • Fareen S, Hayat S (2019) Effect of glucose on the morpho-physiology, photosynthetic efficiency, antioxidant system, and carbohydrate metabolism in Brassica juncea. Protoplasma 256(1):213–226

    Google Scholar 

  • Gao F, Hong F, Liu C, Zheng L, Su M, Wu X, Yang F, Wu C, Yang P (2006) Mechanism of nano-anatase TiO on promoting photosynthetic carbon reaction of spinach: inducing complex of Rubisco-Rubisco activase. Biol Trace Elem Res 111:239–253

    CAS  PubMed  Google Scholar 

  • Garg N, Kaur H (2013) Response of antioxidant enzymes, phytochelatins and glutathione production towards Cd and Zn stresses in Cajanus cajan (L.) Millsp genotypes colonized by arbuscular mycorrhizal fungi. J Agron Crop Sci 199:118–133

    CAS  Google Scholar 

  • Ghosh M, Jana A, Sinha S, Jothiramajayam M, Nag A, Chakraborty A, Mukherjee A, Mukherjee A (2016) Effects of ZnO nanoparticles in plants: cytotoxicity, genotoxicity, deregulation of antioxidant defenses, and cell-cycle arrest. Mutat Res Genet Toxicol Environ Mutagen 807:25–32

    CAS  PubMed  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    CAS  PubMed  Google Scholar 

  • Gratao PL, Polle A, Lea PJ, Azevedo RA (2006) Making the life of heavy metal stressed plants a little easier. Funct Plant Biol 32:481–494

    Google Scholar 

  • Hasan SA, Hayat S, Ali B, Ahmad A (2008) 28-Homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidant. Environ Poll 151:60–66

    CAS  Google Scholar 

  • Hasan SA, Hayat S, Ahmad A (2009) Screening of tomato (Lycopersicon esculentum) cultivars against cadmium through shotgun approach. J Plant Inter 4:187–201

    CAS  Google Scholar 

  • Hasan SA, Hayat S, Ahmad A (2011) Brassinosteroids protect photosynthetic machinery against the cadmium induced oxidative stress in two tomato cultivars. Chemosphere 84:1446–1451

    CAS  PubMed  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline 259 under changing environments: a review. Plant Signal Behav 7:1456–1466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain MA, Bhattacharjee S, Armin SM, Qian P, Xin W, Li HY, Burritt DJ, Fujita M, Tran LSP (2015) Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. Front Plant Sci 420:16–26

    Google Scholar 

  • Hussain I, Singh NB, Singh A, Singh H, Singh SC (2016) Green synthesis of nanoparticles and its potential application. Biotechnol Lett 38(4):545–560

    CAS  PubMed  Google Scholar 

  • Hussain A, Ali S, Rizwan M, Rehman MZ, Javed MR, Imran M, Chatha SAS, Nazir R (2018) Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environ Pollut 242:1518–1526

    CAS  PubMed  Google Scholar 

  • Irfan M, Ahmad A, Hayat S (2014) Effect of cadmium on the growth and antioxidant enzymes in two varieties of Brassica juncea. Saudi J Biol Sci 21(2):125–131

    CAS  PubMed  Google Scholar 

  • Jaworski EG (1971) Nitrate reductase assay in intact plant tissue. Biochem Biophys Res Co 43:1274–1279

    CAS  PubMed  Google Scholar 

  • Kantabathini VP, Mallula B, Udayar SPG (2018) The effect of zinc oxide nanoparticles (ZnO NPs) on Vigna mungo L. seedling growth and antioxidant activity. Nanosci Nanotechnol-Asia 8: 1.

    Google Scholar 

  • Khan TA, Yusuf M, Fariduddin Q (2015) Seed treatment with H2O2 modifies net photosynthetic rate and antioxidant system in mung bean (Vigna radiata L. Wilczek) plants. Isr J Plant Sci 62(3):167–175

    Google Scholar 

  • Khan MN, Mobin M, Abbas ZK, Al-Mutairi KA, Siddiqui ZH (2017) Role of nanomaterials in plants under challenging environments. Plant Physiol Biochem 110:194–209

    CAS  PubMed  Google Scholar 

  • Krishnaraj C, Jagan EG, Ramachandran R, Abirami SM, Mohan N, Kalaichelvan PT (2012) Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. Plant growth metabolism. Proc Biochem 47:651–658

    CAS  Google Scholar 

  • Latef AAHA, Alhmad MFA, Abdelfattah KE (2017) The possible roles of priming with ZnO nanoparticles in mitigation of salinity stress in lupine (Lupinus termis) plants. J Plant Growth Regul 36(1):60–70

    Google Scholar 

  • Lawre S, Raskar S (2014) Influence of zinc oxide nanoparticles on growth, flowering and seed productivity in onion. Int J Curr Microbiol Appl Sci 3(7):874–881

    Google Scholar 

  • Leonardi C, Ambrosino P, Esposito F, Fogliano V (2000) Antioxidant activity and carotenoid and tomatine contents in different typologies of fresh consumption tomatoes. J Agric Food Chem 48:4723–4727

    CAS  PubMed  Google Scholar 

  • Li X, Ma XG, He JM (2013) Stomatal bioassay in Arabidopsis leaves. Bio Protoc 3:1–4

    Google Scholar 

  • Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139

    CAS  PubMed  Google Scholar 

  • Liu Y, Wand X, Zeng G, Qui D, Gu J, Zhou M, Chau L (2007) Cadmium induced oxidative stress and response of the ascorbate glutathione cycle in Bechmeria nivea (L.) Gaud. Chemosphere 69:99–107

    CAS  PubMed  Google Scholar 

  • Liu X, Wang F, Shi Z, Tong R, Shi X (2015) Bioavailability of Zn in ZnO nanoparticle-spiked soil and the implications to maize plants. J Nano Res 17:1–11

    Google Scholar 

  • Lopez-Moreno ML, De La Rosa G, Hernandez-Viezcas JA, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 NPs on soybean (Glycine max) plants. Environ Sci Technol 44:7315–7320

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lutz W, Samir KC (2010) Dimensions of global population projections: what do we know about future population trends and structures? Phil Trans R Soc B 365:2779–2791

    PubMed  PubMed Central  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    CAS  PubMed  Google Scholar 

  • Malar S, Sahi SV, Paulo JCF, Venkatachalam P (2014) Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Bot Stud 55:54–65

    PubMed  PubMed Central  Google Scholar 

  • Manikandan R, Sahi SV, Venkatachalam P (2015) Impact assessment of mercury accumulation and biochemical and molecular response of Mentha arvensis: a potential hyper accumulator plant. Sci World J. https://doi.org/10.1155/2015/715217

    Article  Google Scholar 

  • Nair PMG, Chung IM (2014) Assessment of silver nanoparticle- induced physiological and molecular changes in Arabidopsis thaliana. Environ Sci Poll Res 21(14):8858–8869

    CAS  Google Scholar 

  • Palma JM, Sandalio LM, Corpas FJ, Romero-Puertas MC, McCarthy I, Luis A (2002) Plant proteases, protein degradation, and oxidative stress: role of peroxisomes. Plant Physiol Biochem 40(6–8):521–530

    CAS  Google Scholar 

  • Perez-Chaca MV, Rodriguez-Serrano M, Molina AS, Pedranzani HE, Zirulnik F, Sandalio LM, Romero Puertas MC (2014) Cadmium induces two waves of reactive oxygen species in Glycine max (L.) roots. Plant Cell Environ 37:1672–1687

    CAS  PubMed  Google Scholar 

  • Pradhan S, Patra P, Das S, Chandra S, Mitra S, Dey KK, Akbar S, Palit P, Goswami A (2013) Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: a detailed molecular, biochemical, and biophysical study. Environ Sci Technol 47:13122–13131

    CAS  PubMed  Google Scholar 

  • Pullagurala VLR, Adisa IO, Rawat S, Kim B, Barrios AC, Medina-Velo IA, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2018) Finding the conditions for the beneficial use of ZnO nanoparticles towards plants: a review. Environ Pollut 241:1175–2118

    Google Scholar 

  • Qayyum MF, Rehman MZ, Ali S, Rizwan M, Naeem A, Maqsood MA, Khalid H, Rinklebe J, Ok YS (2017) Residual effects of monoammonium phosphate, gypsum and elemental sulfur on cadmium phytoavailability and translocation from soil to wheat in an effluent irrigated field. Chemosphere 174:515–523

    CAS  PubMed  Google Scholar 

  • Rajiv P, Vanathi P, Thangamani A (2018) An investigation of phytotoxicity using Eichhornia mediated zinc oxide nanoparticles on Helianthus annuus. Biocatal Agric Biotechnol 16:419–424

    Google Scholar 

  • Rattan A, Kapoor N, Kapoor D, Bhardwaj R (2017) Salinity induced damage overwhelmed by the treatment of brassinosteroids in Zea mays seedlings. Adv Biores 8:87–102

    CAS  Google Scholar 

  • Ray PD, Bo-Wen H, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24(5):981–990

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rizwan M, Ali S, Abbas T, Rehman MZ, Hannan F, Keller C, Al-Wabel MI, Ok YS (2016) Cadmium minimization in wheat: a critical review. Ecotoxicol Environ Saf 130:43–53

    CAS  PubMed  Google Scholar 

  • Rizwan M, Ali S, Ziaur Rehman M, Adrees M, Arshad M, Qayyum MF, Ali L, Hussain A, Ali S, Chatha S, Imran M, (2019) Alleviation of cadmium accumulation in maize (Zea mays L.) by foliar spray of zinc oxide nanoparticles and biochar to contaminated soil. Environ Pollut 248:358–367

    CAS  PubMed  Google Scholar 

  • Santhoshkumar J, Kumar SV, Rajeshkumar S (2017) Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resour-Effic Technol 3:459–465

    Google Scholar 

  • Saxena R, Tomar RS, Kumar M (2016) Exploring nanobiotechnology to mitigate abiotic stress in crop plants. J Pharm Sci Res 8(9):974–980

    CAS  Google Scholar 

  • Sewelam N, Kazan K, Schenk PM (2016) Global plant stress signaling: reactive oxygen species at the cross-road. Front Plant Sci 7:187

    PubMed  PubMed Central  Google Scholar 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52

    CAS  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi J Biol Sci 21(1):13–17

    CAS  PubMed  Google Scholar 

  • Siddiqui H, Ahmed KBM, Hayat S (2018) Comparative effect of 28-homobrassinolide and 24-ff epibrassinolide on the performance of different components influencing the photosynthetic machinery in Brassica juncea L. Plant Physiol Biochem 129:198–212

    CAS  PubMed  Google Scholar 

  • Singh NB, Amist N, Yadav K, Singh D, Pandey JK, Singh SC (2013) Zinc oxide nanoparticles as fertilizer for the germination, growth and metabolism of vegetable crops. J Nanoeng Nanomanuf 3:353–364

    CAS  Google Scholar 

  • Smith IK, Vierheller TL, Thorne CA (1988) Assay of glutathione reductase in crude tissue homogenates using 5,5'-dithiobis(2-nitrobenzoic acid). Anal Biochem 175(2):408–413

    CAS  PubMed  Google Scholar 

  • Soliman AS, El-feky SA, Darwish E (2015) Alleviation of salt stress on Moringa peregrina using foliar application of nanofertilizers. J Hort For 7(2):36–47

    CAS  Google Scholar 

  • Srivastava HS (1995) Nitrate reductase. In: Srivastava HS, Sing RP (eds) Nitrogen nutrition in higher plants. Associated Publishing Co., New Delhi, pp 145–164

    Google Scholar 

  • Suliman AE, Tang YW, Xu L (2007) Preparation of ZnO nanoparticles and nanosheets and their application to dye-sensitized solar cells. Sol Energy Mater Sol Cells 91:1658–1662

    Google Scholar 

  • Sun Q, Wang X, Ding S, Yuan X (2005) Effects of interactions between cadmium and zinc on phytochelatin and glutathione production in wheat (Triticum aestivum L.). Environ Toxicol 20:195–201

    CAS  PubMed  Google Scholar 

  • Tiwari SB, Wang S, Hagen G, Guilfoyle TJ (2005) Transfection assays with Arabidopsis protoplasts containing integrated reporter genes. In Arabidopsis Protocols, J. Salinas and J.J. Sanchez-Serrano, eds, (Totowa, NJ: Humana Press): in press

    Google Scholar 

  • Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2015) Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiol Biochem 96:189–198

    CAS  PubMed  Google Scholar 

  • Tripathi DK, Singh S, Singh S, Pandey R, Singh VP, Sharma NC, Prasad SM, Dubey NK, Chauhan DK (2017) An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol Biochem 110:2–12

    CAS  PubMed  Google Scholar 

  • Tripathy BC, Oelmüller R (2012) Reactive oxygen species generation and signaling in plants. Plant Signal Behav 7:1621–1633

    CAS  PubMed  PubMed Central  Google Scholar 

  • Venkatachalam P, Jayaraj M, Manikandan R, Geetha N, Rene ER, Sharma NC, Sahi SV (2017) Zinc oxide nanoparticles (ZnONPs) alleviate heavy metalinduced toxicity in Leucaena leucocephala seedlings: a physiochemical analysis. Plant Physiol Biochem 110:59–69

    CAS  PubMed  Google Scholar 

  • Wang F, Jin X, Adams CA, Shi Z, Sun Y (2018) Decreased ZnO nanoparticles phytotoxicity to maize by arbuscular mycorrhizal fungus and organic phosphorus. Environ Sci Pollut Res 25(24):23736–23747

    CAS  Google Scholar 

  • Xin-Bin D, Rongxian Z, Wei L, Xiaming X, Schuqing C (2001) Effects of carbonic anhydrase in wheat leaf on photosynthetic function under low CO2 concentration. Sci Agric Sin 34:97–100

    Google Scholar 

  • Zhao FJ, Ma Y, Zhu YG, Tang Z, McGrath SP (2015) Soil contamination in China: current status and mitigation strategies. Environ Sci Technol 49:750–759

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

M. Faizan gratefully acknowledges the Chairman, Department of Botany, Aligarh Muslim University, for providing all necessary facilities in carrying out this work. Authors are thankful to Prof. John Pichtel, Ball State University, USA for correcting the manuscript for English grammars.

Funding

This research did not receive any grant from agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamsul Hayat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faizan, M., Faraz, A., Mir, A.R. et al. Role of Zinc Oxide Nanoparticles in Countering Negative Effects Generated by Cadmium in Lycopersicon esculentum. J Plant Growth Regul 40, 101–115 (2021). https://doi.org/10.1007/s00344-019-10059-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-019-10059-2

Keywords

Navigation