Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Long noncoding RNAs as novel players in the pathogenesis of hypertension

Abstract

Long noncoding RNAs (lncRNAs) are non-(protein)-coding RNAs longer than ~200 nucleotides and have been reported to be involved in multiple human diseases by regulating gene expression. A growing body of evidence has demonstrated that lncRNAs are also widely implicated in mechanisms of hypertension, including regulation of the proliferation, migration, and apoptosis of VSMCs; the production of iNOS and NO; and the angiogenic function of endothelial cells. Several lncRNAs were also differentially expressed in the renal and cardiac tissues of hypertensive rats and even in placental samples from preeclampsia patients. In particular, several circulating lncRNAs have been identified as novel biomarkers of hypertension. In this review, we summarize the current studies of lncRNAs in the pathogenesis of hypertension in order to aid in better understanding the molecular mechanism of hypertension and provide a basis to explore new therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Jiang X, Zhang F. Long noncoding RNA: a new contributor and potential therapeutic target in fibrosis. Epigenomics. 2017;9:1233–41.

    Article  CAS  PubMed  Google Scholar 

  2. Mattioli K, Volders PJ, Gerhardinger C, Lee JC, Maass PG, Melé M, et al. High-throughput functional analysis of lncRNA core promoters elucidates rules governing tissue specificity. Genome Res. 2019;29:344–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ulitsky I. Interactions between short and long noncoding RNAs. FEBS Lett. 2018;592:2874–83.

    Article  CAS  PubMed  Google Scholar 

  4. Noh JH, Kim KM, McClusky WG, Abdelmohsen K, Gorospe M. Cytoplasmic functions of long noncoding RNAs. Wiley Interdiscip Rev RNA. 2018;9:e1471.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Mumbach MR, Granja JM, Flynn RA, Roake CM, Satpathy AT, Rubin AJ, et al. HiChIRP reveals RNA-associated chromosome conformation. Nat Methods 2019;16:489–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ramanathan M, Porter DF, Khavari PA. Methods to study RNA–protein interactions. Nat Methods. 2019;16:225–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rafiee A, Riazi-Rad F, Havaskary M, Nuri F. Long noncoding RNAs: regulation, function and cancer. Biotechnol Genet Eng Rev. 2018;34:153–80.

    Article  CAS  PubMed  Google Scholar 

  8. Santer L, López B, Ravassa S, Baer C, Riedel I, Chatterjee S, et al. Circulating long noncoding RNA LIPCAR predicts heart failure outcomes in patients without chronic kidney disease. Hypertension. 2019;73:820–8.

    Article  CAS  PubMed  Google Scholar 

  9. Wise IA, Charchar FJ. Epigenetic modifications in essential hypertension. Int J Mol Sci. 2016;17:451.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Leimena C, Qiu H. Non-coding RNA in the pathogenesis, progression and treatment of hypertension. Int J Mol Sci. 2018;19:piiE927(1–19).

  11. Wang HB, Yang J. The role of renin-angiotensin aldosterone system related micro-ribonucleic acids in hypertension. Saudi Med J. 2015;36:1151–5.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Li X, Wei Y, Wang Z. microRNA-21 and hypertension. Hypertens Res. 2018;41:649–61.

    Article  CAS  PubMed  Google Scholar 

  13. Baker MA, Wang F, Liu Y, Kriegel AJ, Geurts AM, Usa K, et al. MiR-192-5p in the kidney protects against the development of hypertension. Hypertension. 2019;73:399–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vasques-Nóvoa F, Laundos TL, Cerqueira RJ, Quina-Rodrigues C, Soares-Dos-Reis R, Baganha F, et al. MicroRNA-155 amplifies nitric oxide/cGMP signaling and impairs vascular angiotensin II reactivity in septic shock. Crit Care Med. 2018;46:e945–54.

    Article  PubMed  CAS  Google Scholar 

  15. Deng L, Blanco FJ, Stevens H, Lu R, Caudrillier A, McBride M, et al. MicroRNA-143 activation regulates smooth muscle and endothelial cell crosstalk in pulmonary arterial hypertension. Circ Res. 2015;117:870–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sekar D. Circular RNA: a new biomarker for different types of hypertension. Hypertens Res. 2019. https://doi.org/10.1038/s41440-019-0302-y.

  17. Zaiou M. Circular RNAs in hypertension: challenges and clinical promise. Hypertens Res. 2019. https://doi.org/10.1038/s41440-019-0294-7.

  18. Brozovich FV, Nicholson CJ, Degen CV, Gao YZ, Aggarwal M, Morgan KG. Mechanisms of vascular smooth muscle contraction and the basis for pharmacologic treatment of smooth muscle disorders. Pharm Rev. 2016;68:476–532.

    Article  CAS  PubMed  Google Scholar 

  19. Belo VA1, Guimarães DA, Castro MM. Matrix metalloproteinase 2 as a potential mediator of vascular smooth muscle cell migration and chronic vascular remodeling in hypertension. J Vasc Res. 2015;52:221–31.

    Article  CAS  PubMed  Google Scholar 

  20. Li FJ, Zhang CL, Luo XJ, Peng J, Yang TL. Involvement of the MiR-181b-5p/HMGB1 pathway in Ang II-induced phenotypic transformation of smooth muscle cells in hypertension. Aging Dis. 2019;10:231–48.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Leung A, Trac C, Jin W, Lanting L, Akbany A, Satrom P, et al. Novel long noncoding RNAs are regulated by angiotensin II in vascular smooth muscle cells. Circ Res. 2013;113:266–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bell RD, Long X, Lin M, Bergmann JH, Nanda V, Cowan SL, et al. Identification and initial functional characterization of a human vascular cell-enriched long noncoding RNA. Arterioscler Thromb Vasc Biol. 2014;34:1249–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ballantyne MD, Pinel K, Dakin R, Vesey AT, Diver L, Mackenzie R, et al. Smooth muscle enriched long noncoding RNA (SMILR) regulates cell proliferation. Circulation. 2016;133:2050–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mahmoud AD, Ballantyne MD, Miscianinov V, Pinel K, Hung J, Scanlon JP, et al. The human-specific and smooth muscle cell-enriched LncRNA SMILR promotes proliferation by regulating mitotic CENPF mRNA and drives cell-cycle progression which can be targeted to limit vascular remodeling. Circ Res. 2019;125:535–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang YN, Shan K, Yao MD, Yao J, Wang JJ, Li X, et al. Long noncoding RNA-GAS5: a novel regulator of hypertension-induced vascular remodeling. Hypertension. 2016;68:736–48.

    Article  CAS  PubMed  Google Scholar 

  26. Liu K, Liu C, Zhang Z. lncRNA GAS5 acts as a ceRNA for miR-21 in suppressing PDGF-bb-induced proliferation and migration in vascular smooth muscle cells. J Cell Biochem. 2019;120:15233–40.

    Article  CAS  PubMed  Google Scholar 

  27. Brock M, Schuoler C, Leuenberger C, Bühlmann C, Haider TJ, Vogel J, et al. Analysis of hypoxia-induced noncoding RNAs reveals metastasis-associated lung adenocarcinoma transcript 1 as an important regulator of vascular smooth muscle cell proliferation. Exp Biol Med (Maywood). 2017;242:487–96.

    Article  CAS  Google Scholar 

  28. Song TF, Huang LW, Yuan Y, Wang HQ, He HP, Ma WJ, et al. LncRNA MALAT1 regulates smooth muscle cell phenotype switch via activation of autophagy. Oncotarget. 2017;9:4411–26.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yao QP, Xie ZW, Wang KX, Zhang P, Han Y, Qi YX, et al. Profiles of long noncoding RNAs in hypertensive rats: long noncoding RNA XR007793 regulates cyclic strain-induced proliferation and migration of vascular smooth muscle cells. J Hypertens. 2017;35:1195–203.

    Article  CAS  PubMed  Google Scholar 

  30. Wu YX, Zhang SH, Cui J, Liu FT. Long noncoding RNA XR007793 regulates proliferation and migration of vascular smooth muscle cell via suppressing miR-23b. Med Sci Monit. 2018;24:5895–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mantella LE, Singh KK, Sandhu P, Kantores C, Ramadan A, Khyzha N, et al. Fingerprint of long non-coding RNA regulated by cyclic mechanical stretch in human aortic smooth muscle cells: implications for hypertension. Mol Cell Biochem. 2017;435:163–73.

    Article  CAS  PubMed  Google Scholar 

  32. Sun Z, Nie X, Sun S, Dong S, Yuan C, Li Y, et al. Long non-coding RNA MEG3 downregulation triggers human pulmonary artery smooth muscle cell proliferation and migration via the p53 signaling pathway. Cell Physiol Biochem. 2017;42:2569–81.

    Article  CAS  PubMed  Google Scholar 

  33. Zhu B, Gong Y, Yan G, Wang D, Qiao Y, Wang Q, et al. Down-regulation of lncRNA MEG3 promotes hypoxia-induced human pulmonary artery smooth muscle cell proliferation and migration via repressing PTEN by sponging miR-21. Biochem Biophys Res Commun. 2018;495:2125–32.

    Article  CAS  PubMed  Google Scholar 

  34. Bai Y, Zhang Q, Su Y, Pu Z, Li K. Modulation of the proliferation/apoptosis balance of vascular smooth muscle cells in atherosclerosis by lncRNA-MEG3 via regulation of miR-26a/Smad1 axis. Int Heart J. 2019;60:444–50.

    Article  CAS  PubMed  Google Scholar 

  35. Wang M, Li C, Zhang Y, Zhou X, Liu Y, Lu C. LncRNA MEG3-derived miR-361-5p regulate vascular smooth muscle cells proliferation and apoptosis by targeting ABCA1. Am J Transl Res. 2019;11:3600–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Zheng X, Wu Z, Xu K, Qiu Y, Su X, Zhang Z, et al. Interfering histone deacetylase 4 inhibits the proliferation of vascular smooth muscle cells via regulating MEG3/miR-125a-5p/IRF1. Cell Adh Migr. 2019;13:41–9.

    Article  CAS  PubMed  Google Scholar 

  37. Li H, Liu X, Zhang L, Li X. lncRNA BANCR facilitates vascular smooth muscle cell proliferation and migration through JNK pathway. Oncotarget. 2017;8:114568–75.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chen J, Guo J, Cui X, Dai Y, Tang Z, Qu J, et al. The long noncoding RNA LnRPT is regulated by PDGF-BB and modulates the proliferation of pulmonary artery smooth muscle cells. Am J Respir Cell Mol Biol. 2018;58:181–93.

    Article  CAS  PubMed  Google Scholar 

  39. Jin L, Lin X, Yang L, Fan X, Wang W, Li S, et al. AK098656, a novel vascular smooth muscle cell-dominant long noncoding RNA, promotes hypertension. Hypertension. 2018;71:262–72.

    Article  CAS  PubMed  Google Scholar 

  40. Liu Y, Sun Z, Zhu J, Xiao B, Dong J, Li X. LncRNA-TCONS_00034812 in cell proliferation and apoptosis of pulmonary artery smooth muscle cells and its mechanism. J Cell Physiol. 2018;233:4801–14.

    Article  CAS  PubMed  Google Scholar 

  41. Wang R, Zhou S, Wu P, Li M, Ding X, Sun L, et al. Identifying involvement of H19-miR-675-3p-IGF1R and H19-miR-200a-PDCD4 in treating pulmonary hypertension with melatonin. Mol Ther Nucleic Acids. 2018;13:44–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Su H, Xu X, Yan C, Shi Y, Hu Y, Dong L, et al. LncRNA H19 promotes the proliferation of pulmonary artery smooth muscle cells through AT1R via sponging let-7b in monocrotaline-induced pulmonary arterial hypertension. Respir Res. 2018;19:254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shi L, Tian C, Sun L, Cao F, Meng Z. The lncRNA TUG1/miR-145-5p/FGF10 regulates proliferation and migration in VSMCs of hypertension. Biochem Biophys Res Commun. 2018;501:688–95.

    Article  CAS  PubMed  Google Scholar 

  44. Yang L, Liang H, Shen L, Guan Z, Meng X. LncRNA Tug1 involves in the pulmonary vascular remodeling in mice with hypoxic pulmonary hypertension via the microRNA-374c-mediated Foxc1. Life Sci. 2019;237:116769.

  45. Das S, Senapati P, Chen Z, Reddy MA, Ganguly R, Lanting L, et al. Regulation of angiotensin II actions by enhancers and super-enhancers in vascular smooth muscle cells. Nat Commun. 2017;8:1467.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Das S, Zhang E, Senapati P, Amaram V, Reddy MA, Stapleton K, et al. A novel Angiotensin II-induced long noncoding RNA Giver regulates oxidative stress, inflammation, and proliferation in vascular smooth muscle cells. Circ Res. 2018;123:1298–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhu TT, Sun RL, Yin YL, Quan JP, Song P, Xu J, et al. Long noncoding RNA UCA1 promotes the proliferation of hypoxic human pulmonary artery smooth muscle cells. Pflug Arch. 2019;471:347–55.

    Article  CAS  Google Scholar 

  48. Zhang H, Liu Y, Yan L, Wang S, Zhang M, Ma C, et al. Long noncoding RNA Hoxaas3 contributes to hypoxia-induced pulmonary artery smooth muscle cell proliferation. Cardiovasc Res. 2019;115:647–57.

    Article  CAS  PubMed  Google Scholar 

  49. Fang G, Qi J, Huang L, Zhao X. LncRNA MRAK048635_P1 is critical for vascular smooth muscle cell function and phenotypic switching in essential hypertension. Biosci Rep. 2019;39:piiBSR2018229(1–11).

  50. Zhang Z, Li Z, Wang Y, Wei L, Chen H. Overexpressed long noncoding RNA CPS1-IT alleviates pulmonary arterial hypertension in obstructive sleep apnea by reducing interleukin-1β expression via HIF1 transcriptional activity. J Cell Physiol. 2019;234:19715–27.

    Article  CAS  PubMed  Google Scholar 

  51. Goto K, Ohtsubo T, Kitazono T. Endothelium-dependent hyperpolarization (EDH) in hypertension: the role of endothelial ion channels. Int J Mol Sci. 2018;19:E315. https://doi.org/10.3390/ijms19010315.

    Article  CAS  PubMed  Google Scholar 

  52. Tian X, Yu C, Shi L, Li D, Chen X, Xia D, et al. MicroRNA-199a-5p aggravates primary hypertension by damaging vascular endothelial cells through inhibition of autophagy and promotion of apoptosis. Exp Ther Med. 2018;16:595–602.

    PubMed  PubMed Central  Google Scholar 

  53. Zhang HN, Xu QQ, Thakur A, Alfred MO, Chakraborty M, Ghosh A, et al. Endothelial dysfunction in diabetes and hypertension: role of microRNAs and long non-coding RNAs. Life Sci. 2018;213:258–68.

    Article  CAS  PubMed  Google Scholar 

  54. Yang Y, Xi P, Xie Y, Zhao C, Xu J, Jiang J. Notoginsenoside R1 reduces blood pressure in spontaneously hypertensive rats through a long noncoding RNA AK094457. Int J Clin Exp Pathol. 2015;8:2700–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhuo X, Wu Y, Yang Y, Gao L, Qiao X, Chen T. LncRNA AK094457 promotes AngII-mediated hypertension and endothelial dysfunction through suppressing of activation of PPARγ. Life Sci. 2019;233:116745.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang X, Yang X, Lin Y, Suo M, Gong L, Chen J, et al. Anti-hypertensive effect of Lycium barbarum L. with down-regulated expression of renal endothelial lncRNA sONE in a rat model of salt-sensitive hypertension. Int J Clin Exp Pathol. 2015;8:6981–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Gu S, Li G, Zhang X, Yan J, Gao J, An X, et al. Aberrant expression of long noncoding RNAs in chronic thromboembolic pulmonary hypertension. Mol Med Rep. 2015;11:2631–43.

    Article  CAS  PubMed  Google Scholar 

  58. Josipovic I, Fork C, Preussner J, Prior KK, Iloska D, Vasconez AE, et al. PAFAH1B1 and the lncRNA NONHSAT073641 maintain an angiogenic phenotype in human endothelial cells. Acta Physiol. 2016;218:13–27.

    CAS  Google Scholar 

  59. Leisegang MS, Fork C, Josipovic I, Richter FM, Preussner J, Hu J, et al. Long noncoding RNA MANTIS facilitates endothelial angiogenic function. Circulation. 2017;136:65–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lu Q, Meng Q, Qi M, Li F, Liu B. Shear-sensitive lncRNA AF131217.1 inhibits inflammation in HUVECs via regulation of KLF4. Hypertension. 2019;73:e25–34.

    Article  CAS  PubMed  Google Scholar 

  61. Bischoff FC, Werner A, John D, Boeckel JN, Melissari MT, Grote P, et al. Identification and functional characterization of hypoxia-induced endoplasmic reticulum stress regulating lncRNA (HypERlnc) in Pericytes. Circ Res. 2017;121:368–75.

    Article  CAS  PubMed  Google Scholar 

  62. Wang F, Li L, Xu H, Liu Y, Yang C, Cowley AW Jr, et al. Characteristics of long non-coding RNAs in the Brown Norway rat and alterations in the Dahl salt-sensitive rat. Sci Rep. 2014;4:7146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gopalakrishnan K, Kumarasamy S, Mell B, Joe B. Genome-wide identification of long noncoding RNAs in rat models of cardiovascular and renal disease. Hypertension. 2015;65:200–10.

    Article  CAS  PubMed  Google Scholar 

  64. Hou L, Lin Z, Ni Y, Wu Y, Chen D, Song L, et al. Microarray expression profiling and gene ontology analysis of long non-coding RNAs in spontaneously hypertensive rats and their potential roles in the pathogenesis of hypertension. Mol Med Rep. 2016;13:295–300.

    Article  CAS  PubMed  Google Scholar 

  65. Cheng X, Waghulde H, Mell B, Morgan EE, Pruett-Miller SM, Joe B. Positional cloning of quantitative trait nucleotides for blood pressure and cardiac QT-interval by targeted CRISPR/Cas9 editing of a novel long non-coding RNA. PLoS Genet. 2017;13:e1006961.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Cao Y, Yang Y, Wang L, Li L, Zhang J, Gao X, et al. Analyses of long non-coding RNA and mRNA profiles in right ventricle myocardium of acute right heart failure in pulmonary arterial hypertension rats. Biomed Pharmacother. 2018;106:1108–15.

    Article  CAS  PubMed  Google Scholar 

  67. Zhang Y, Zou Y, Wang W, Zuo Q, Jiang Z, Sun M, et al. Down-regulated long non-coding RNA MEG3 and its effect on promoting apoptosis and suppressing migration of trophoblast cells. J Cell Biochem. 2015;116:542–50.

    Article  CAS  PubMed  Google Scholar 

  68. Lv H, Tong J, Yang J, Lv S, Li WP, Zhang C, et al. Dysregulated pseudogene HK2P1 may contribute to preeclampsia as a competing endogenous RNA for hexokinase 2 by impairing decidualization. Hypertension. 2018;71:648–58.

    Article  CAS  PubMed  Google Scholar 

  69. Xu J, Xia Y, Zhang H, Guo H, Feng K, Zhang C. Overexpression of long non-coding RNA H19 promotes invasion and autophagy via the PI3K/AKT/mTOR pathways in trophoblast cells. Biomed Pharmacother. 2018;101:691–7.

    Article  CAS  PubMed  Google Scholar 

  70. Liu Y, Han TL, Luo X, Bai Y, Chen X, Peng W, et al. The metabolic role of LncZBTB39-1:2 in the trophoblast mobility of preeclampsia. Genes Dis. 2018;5:235–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yang Y, Xi L, Ma Y, Zhu X, Chen R, Luan L, et al. The lncRNA small nucleolar RNA host gene 5 regulates trophoblast cell proliferation, invasion, and migration via modulating miR-26a-5p/N-cadherin axis. J Cell Biochem. 2019;120:3173–84.

    Article  CAS  PubMed  Google Scholar 

  72. Cheng D, Jiang S, Chen J, Li J, Ao L, Zhang Y. The increased lncRNA MIR503HG in preeclampsia modulated trophoblast cell proliferation, invasion, and migration via regulating matrix metalloproteinases and NF-κB signaling. Dis Markers. 2019;2019:4976845.

    PubMed  PubMed Central  Google Scholar 

  73. Qi P, Zhou XY, Du X. Circulating long non-coding RNAs in cancer: current status and future perspectives. Mol Cancer. 2016;15:39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Zhang X, Nie X, Yuan S, Li H, Fan J, Li C, et al. Circulating long non-coding RNA ENST00000507296 is a prognostic indicator in patients with dilated cardiomyopathy. Mol Ther Nucleic Acids. 2019;16:82–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yu S, Qi Y, Jiang J, Wang H, Zhou Q. APTR is a prognostic marker in cirrhotic patients with portal hypertension during TIPS procedure. Gene. 2018;645:30–33.

    Article  CAS  PubMed  Google Scholar 

  76. Chen S, Chen R, Zhang T, Lin S, Chen Z, Zhao B, et al. Relationship of cardiovascular disease risk factors and noncoding RNAs with hypertension: a case-control study. BMC Cardiovasc Disord. 2018;18:58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Sun Y, Hou Y, Lv N, Liu Q, Lin N, Zhao S, et al. Circulating lncRNA BC030099 increases in preeclampsia patients. Mol Ther Nucleic Acids. 2019;14:562–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

National Science Foundation of China (31100834) International Cooperation Foundation of Shaanxi Province (2012KW-32-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoying Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Ning, Q. Long noncoding RNAs as novel players in the pathogenesis of hypertension. Hypertens Res 43, 597–608 (2020). https://doi.org/10.1038/s41440-020-0408-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-020-0408-2

Keywords

This article is cited by

Search

Quick links