Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The current state of tissue engineering in the management of hypospadias

Abstract

Hypospadias is a congenital malformation resulting from the disruption of normal urethral formation with varying global prevalence. Hypospadias repair, especially that of proximal hypospadias (in which reconstruction of a long urethra is necessary), remains a surgical challenge despite more than two decades of surgical technique development and refinement. The lack of tissue substitutes with mechanical and biological properties similar to those of native urethra is a challenge for which the field of tissue engineering might offer promising solutions. However, the use of tissue-engineered constructs in preclinical studies is still hindered by complications such as strictures or fistulae, which have slowed progression to clinical application. Furthermore, the generation of uniform tubular constructs remains a challenge. Exciting advances in the application of nanotechnology and 3D bioprinting to urethral tissue engineering might present solutions to these issues.

Key points

  • Hypospadias is a common congenital abnormality with genetic, molecular and environmental causes that can result in functional or cosmetic issues for affected individuals.

  • Distal hypospadias repair is relatively successful, but complication rates of proximal hypospadias repair are high even for experienced surgeons despite surgical technique refinement.

  • Tissue engineering could address the lack of tissue substitutes with properties similar to those of native urethra for use in urethral reconstruction.

  • For hypospadias in particular, improved understanding of the mechanical properties and biological support being provided by the corpus spongiosum is needed.

  • Amongst the emerging tissue engineering technologies, nanotechnology could enable alteration of the microenvironment to improve wound healing and regeneration, and 3D bioprinting could be used to offer patient-tailored urethral constructs.

  • Scientific barriers, such as identifying the ideal tissue-engineered urethral construct, and practical barriers, including institutional support and funding for translational research, hamper clinical application of tissue-engineered constructs in hypospadias repair.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The meatal locations in varying degrees of hypospadias.
Fig. 2: Surgical management algorithm for hypospadias.
Fig. 3: Future applications of 3D bioprinting and nanotechnology in hypospadias repair.

Similar content being viewed by others

References

  1. Li, Y. et al. Canalization of the urethral plate precedes fusion of the urethral folds during male penile urethral development: the double zipper hypothesis. J. Urol. 193, 1353–1359 (2015).

    Article  PubMed  Google Scholar 

  2. Gong, E. M. & Cheng, E. Y. Current challenges with proximal hypospadias: we have a long way to go. J. Pediatr. Urol. 13, 457–467 (2017).

    Article  PubMed  Google Scholar 

  3. Baskin, L. et al. Development of the human penis and clitoris. Differentiation 103, 74–85 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shafiee, A. & Atala, A. Tissue engineering: toward a new era of medicine. Annu. Rev. Med. 68, 29–40 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Cunha, G. R., Sinclair, A., Risbridger, G., Hutson, J. & Baskin, L. S. Current understanding of hypospadias: relevance of animal models. Nat. Rev. Urol. 12, 271–280 (2015).

    Article  PubMed  Google Scholar 

  6. Paulozzi, L. J., Erickson, J. D. & Jackson, R. J. Hypospadias trends in two US surveillance systems. Pediatrics 100, 831–834 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Springer, A., van den Heijkant, M. & Baumann, S. Worldwide prevalence of hypospadias. J. Pediatr. Urol. 12, 152.e1–152.e7 (2016).

    Article  CAS  Google Scholar 

  8. Bergman, J. E. et al. Epidemiology of hypospadias in Europe: a registry-based study. World J. Urol. 33, 2159–2167 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Schnack, T. H. et al. Familial aggregation of hypospadias: a cohort study. Am. J. Epidemiol. 167, 251–256 (2008).

    Article  PubMed  Google Scholar 

  10. Carmichael, S. L. et al. Hypospadias and genes related to genital tubercle and early urethral development. J. Urol. 190, 1884–1892 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kon, M. et al. Molecular basis of non-syndromic hypospadias: systematic mutation screening and genome-wide copy-number analysis of 62 patients. Hum. Reprod. 30, 499–506 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Bouty, A., Ayers, K. L., Pask, A., Heloury, Y. & Sinclair, A. H. The genetic and environmental factors underlying hypospadias. Sex. Dev. 9, 239–259 (2015).

    Article  PubMed  Google Scholar 

  13. Shih, E. M. & Graham, J. M. Jr. Review of genetic and environmental factors leading to hypospadias. Eur. J. Med. Genet. 57, 453–463 (2014).

    Article  PubMed  Google Scholar 

  14. Dabrowski, E. et al. Proximal hypospadias and a novel WT1 variant: when should genetic testing be considered? Pediatrics 141, S491–S495 (2018).

    Article  PubMed  Google Scholar 

  15. Giordano, F. et al. Maternal exposures to endocrine disrupting chemicals and hypospadias in offspring. Birth Defects Res. A Clin. Mol. Teratol. 88, 241–250 (2010).

    CAS  PubMed  Google Scholar 

  16. Kalfa, N. et al. Is hypospadias associated with prenatal exposure to endocrine disruptors? A French collaborative controlled study of a cohort of 300 consecutive children without genetic defect. Eur. Urol. 68, 1023–1030 (2015).

    Article  PubMed  Google Scholar 

  17. Klip, H. et al. Hypospadias in sons of women exposed to diethylstilbestrol in utero: a cohort study. Lancet 359, 1102–1107 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Kalfa, N., Paris, F., Soyer-Gobillard, M. O., Daures, J. P. & Sultan, C. Prevalence of hypospadias in grandsons of women exposed to diethylstilbestrol during pregnancy: a multigenerational national cohort study. Fertil. Steril. 95, 2574–2577 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Rodriguez-Pinilla, E. et al. Risk of hypospadias in newborn infants exposed to valproic acid during the first trimester of pregnancy: a case-control study in Spain. Drug. Saf. 31, 537–543 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Jentink, J. et al. Valproic acid monotherapy in pregnancy and major congenital malformations. N. Engl. J. Med. 362, 2185–2193 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Diamanti-Kandarakis, E. et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr. Rev. 30, 293–342 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Morales-Suarez-Varela, M. M. et al. Parental occupational exposure to endocrine disrupting chemicals and male genital malformations: a study in the Danish National Birth Cohort study. Env. Health 10, 3 (2011).

    Article  Google Scholar 

  23. Estors Sastre, B. et al. Occupational exposure to endocrine-disrupting chemicals and other parental risk factors in hypospadias and cryptorchidism development: a case-control study. J. Pediatr. Urol. 15, 520.e1–520.e8 (2019).

    Article  CAS  Google Scholar 

  24. Yinon, Y. et al. Hypospadias in males with intrauterine growth restriction due to placental insufficiency: the placental role in the embryogenesis of male external genitalia. Am. J. Med. Genet. A 152A, 75–83 (2010).

    Article  PubMed  Google Scholar 

  25. Hussain, N. et al. Hypospadias and early gestation growth restriction in infants. Pediatrics 109, 473–478 (2002).

    Article  PubMed  Google Scholar 

  26. Glenister, T. W. The origin and fate of the urethral plate in man. J. Anat. 88, 413–425 (1954).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu, X. et al. Human glans and preputial development. Differentiation 103, 86–99 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Duckett, J. W. in Adult and Pediatric Urology 3rd edn (eds Gillenwater, J. Y., Grayhack, J. T., Howards, S. S. & Duckett, J. W.) 2549–2590 (Mosby Year Book, 1996).

  29. Hadidi, A. T. in Hypospadias Surgery (eds Hadidi, A. T. & Azmy, A. F.) 79–82 (Springer, 2004).

  30. Snodgrass, W., Macedo, A., Hoebeke, P. & Mouriquand, P. D. Hypospadias dilemmas: a round table. J. Pediatr. Urol. 7, 145–157 (2011).

    Article  PubMed  Google Scholar 

  31. van der Horst, H. J. & de Wall, L. L. Hypospadias, all there is to know. Eur. J. Pediatr. 176, 435–441 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Keays, M. A. et al. Patient reported outcomes in preoperative and postoperative patients with hypospadias. J. Urol. 195, 1215–1220 (2016).

    Article  PubMed  Google Scholar 

  33. Schlomer, B., Breyer, B., Copp, H., Baskin, L. & DiSandro, M. Do adult men with untreated hypospadias have adverse outcomes? A pilot study using a social media advertised survey. J. Pediatr. Urol. 10, 672–679 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jaber, J., Kocherov, S., Chertin, L., Farkas, A. & Chertin, B. Voiding patterns of adult patients who underwent hypospadias repair in childhood. J. Pediatr. Urol. 13, 78.e71–78.e75 (2017).

    Article  Google Scholar 

  35. Chertin, B. et al. Objective and subjective sexual outcomes in adult patients after hypospadias repair performed in childhood. J. Urol. 190, 1556–1560 (2013).

    Article  PubMed  Google Scholar 

  36. Ortqvist, L. et al. Sexuality and fertility in men with hypospadias; improved outcome. Andrology 5, 286–293 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Asklund, C. et al. Semen quality, reproductive hormones and fertility of men operated for hypospadias. Int. J. Androl. 33, 80–87 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Kumar, S. et al. Fertility potential in adult hypospadias. J. Clin. Diagn. Res. 10, PC01–PC05 (2016).

    PubMed  PubMed Central  Google Scholar 

  39. Skarin Nordenvall, A. et al. Psychosocial outcomes in adult men born with hypospadias: a register-based study. PLoS One 12, e0174923 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Ortqvist, L. et al. Psychosocial outcome in adult men born with hypospadias. J. Pediatr. Urol. 13, 79.e1–79.e7 (2017).

    Article  CAS  Google Scholar 

  41. Hadidi, A. T. History of hypospadias: lost in translation. J. Pediatr. Surg. 52, 211–217 (2017).

    Article  PubMed  Google Scholar 

  42. Baskin, L. S. & Ebbers, M. B. Hypospadias: anatomy, etiology, and technique. J. Pediatr. Surg. 41, 463–472 (2006).

    Article  PubMed  Google Scholar 

  43. Steven, L. et al. Current practice in paediatric hypospadias surgery; a specialist survey. J. Pediatr. Urol. 9, 1126–1130 (2013).

    Article  PubMed  Google Scholar 

  44. American Academy of Pediatrics. Timing of elective surgery on the genitalia of male children with particular reference to the risks, benefits, and psychological effects of surgery and anesthesia. Pediatrics 97, 590–594 (1996).

    Google Scholar 

  45. Morrison, C. & Cheng, E. Y. in Operative Techniques in Plastic Surgery (eds Chung, K C., et al.) 3041–3051 (Wolters Kluwer, 2019).

  46. Subramaniam, R., Spinoit, A. F. & Hoebeke, P. Hypospadias repair: an overview of the actual techniques. Semin. Plast. Surg. 25, 206–212 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lee, O. T., Durbin-Johnson, B. & Kurzrock, E. A. Predictors of secondary surgery after hypospadias repair: a population based analysis of 5,000 patients. J. Urol. 190, 251–255 (2013).

    Article  PubMed  Google Scholar 

  48. Wilkinson, D. J., Farrelly, P. & Kenny, S. E. Outcomes in distal hypospadias: a systematic review of the Mathieu and tubularized incised plate repairs. J. Pediatr. Urol. 8, 307–312 (2012).

    Article  PubMed  Google Scholar 

  49. Pfistermuller, K. L., McArdle, A. J. & Cuckow, P. M. Meta-analysis of complication rates of the tubularized incised plate (TIP) repair. J. Pediatr. Urol. 11, 54–59 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Hueber, P. A. et al. Long-term functional outcomes of distal hypospadias repair: a single center retrospective comparative study of TIPs, Mathieu and MAGPI. J. Pediatr. Urol. 11, 68 e61–67 (2015).

    Article  Google Scholar 

  51. Liang, W. et al. Surgical repair of mid-shaft hypospadias using a transverse preputial island flap and pedicled dartos flap around urethral orifice. Aesthetic Plast. Surg. 40, 535–539 (2016).

    Article  PubMed  Google Scholar 

  52. Ahmed, M. & Alsaid, A. Is combined inner preputial inlay graft with tubularized incised plate in hypospadias repair worth doing? J. Pediatr. Urol. 11, 229.e1–229.e4 (2015).

    Article  Google Scholar 

  53. Spinoit, A. F. et al. Grade of hypospadias is the only factor predicting for re-intervention after primary hypospadias repair: a multivariate analysis from a cohort of 474 patients. J. Pediatr. Urol. 11, 70.e1–70.e6 (2015).

    Article  Google Scholar 

  54. Pippi Salle, J. L. et al. Proximal hypospadias: a persistent challenge. Single institution outcome analysis of three surgical techniques over a 10-year period. J. Pediatr. Urol. 12, 28.e1–28.e7 (2016).

    Article  CAS  Google Scholar 

  55. Long, C. J. et al. Intermediate-term followup of proximal hypospadias repair reveals high complication rate. J. Urol. 197, 852–858 (2017).

    Article  PubMed  Google Scholar 

  56. Stanasel, I. et al. Complications following staged hypospadias repair using transposed preputial skin flaps. J. Urol. 194, 512–516 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Tiryaki, S. et al. Unexpected outcome of a modification of bracka repair for proximal hypospadias: high incidence of diverticula with flaps. J. Pediatr. Urol. 12, 395e1–395.e6 (2016).

    Article  Google Scholar 

  58. Lanciotti, M. et al. Proximal hypospadias repair with bladder mucosal graft: our 10 years experience. J. Pediatr. Urol. 13, 294.e1–294.e6 (2017).

    Article  Google Scholar 

  59. de Kemp, V., de Graaf, P., Fledderus, J. O., Ruud Bosch, J. L. & de Kort, L. M. Tissue engineering for human urethral reconstruction: systematic review of recent literature. PLoS One 10, e0118653 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Howard, D., Buttery, L. D., Shakesheff, K. M. & Roberts, S. J. Tissue engineering: strategies, stem cells and scaffolds. J. Anat. 213, 66–72 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Orabi, H. et al. Tissue engineering of urinary bladder and urethra: advances from bench to patients. ScientificWorldJournal 2013, 154564 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Atala, A. et al. The potential role of tissue-engineered urethral substitution: clinical and preclinical studies. J. Tissue Eng. Regen. Med. 11, 3–19 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Versteegden, L. R. M. et al. Tissue engineering of the urethra: a systematic review and meta-analysis of preclinical and clinical studies. Eur. Urol. 72, 594–606 (2017).

    Article  PubMed  Google Scholar 

  64. Versteegden, L. R. et al. Tubular collagen scaffolds with radial elasticity for hollow organ regeneration. Acta Biomater. 52, 1–8 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Pinnagoda, K. et al. Engineered acellular collagen scaffold for endogenous cell guidance, a novel approach in urethral regeneration. Acta Biomater. 43, 208–217 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Sack, B. S., Mauney, J. R. & Estrada, C. R. Jr. Silk fibroin scaffolds for urologic tissue engineering. Curr. Urol. Rep. 17, 16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Altman, G. H. et al. Silk-based biomaterials. Biomaterials 24, 401–416 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Chung, Y. G. et al. Acellular bi-layer silk fibroin scaffolds support tissue regeneration in a rabbit model of onlay urethroplasty. PLoS One 9, e91592 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Lv, X. et al. Structural and functional evaluation of oxygenating keratin/silk fibroin scaffold and initial assessment of their potential for urethral tissue engineering. Biomaterials 84, 99–110 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Jerman, U. D., Veranic, P. & Kreft, M. E. Amniotic membrane scaffolds enable the development of tissue-engineered urothelium with molecular and ultrastructural properties comparable to that of native urothelium. Tissue Eng. Part. C. Methods 20, 317–327 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Oottamasathien, S., Hotaling, J. M., Craig, J. R., Myers, J. B. & Brant, W. O. Amniotic therapeutic biomaterials in urology: current and future applications. Transl Androl. Urol. 6, 943–950 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ramuta, T. Z. & Kreft, M. E. Human amniotic membrane and amniotic membrane-derived cells: how far are we from their use in regenerative and reconstructive urology? Cell Transpl. 27, 77–92 (2018).

    Article  Google Scholar 

  73. Shakeri, S. et al. Application of amniotic membrane as xenograft for urethroplasty in rabbit. Int. Urol. Nephrol. 41, 895–901 (2009).

    Article  PubMed  Google Scholar 

  74. Gunes, M. et al. A novel approach to penile augmentation urethroplasty using buccal mucosa and amniotic membrane: a pilot study in a rabbit model. Urology 87, 210–215 (2016).

    Article  PubMed  Google Scholar 

  75. Adamowicz, J. et al. New amniotic membrane based biocomposite for future application in reconstructive urology. PLoS One 11, e0146012 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. El-Assmy, A., El-Hamid, M. A. & Hafez, A. T. Urethral replacement: a comparison between small intestinal submucosa grafts and spontaneous regeneration. BJU Int. 94, 1132–1135 (2004).

    Article  PubMed  Google Scholar 

  77. Kawano, P. R. et al. Comparative study between porcine small intestinal submucosa and buccal mucosa in a partial urethra substitution in rabbits. J. Endourol. 26, 427–432 (2012).

    Article  PubMed  Google Scholar 

  78. Huang, J. W. et al. Reconstruction of penile urethra with the 3-dimensional porous bladder acellular matrix in a rabbit model. Urology 84, 1499–1505 (2014).

    Article  PubMed  Google Scholar 

  79. Cao, N. et al. Prevascularized bladder acellular matrix hydrogel/silk fibroin composite scaffolds promote the regeneration of urethra in a rabbit model. Biomed. Mater. 14, 015002 (2018).

    Article  PubMed  Google Scholar 

  80. Chun, S. Y. et al. Urethroplasty using autologous urethral tissue-embedded acellular porcine bladder submucosa matrix grafts for the management of long-segment urethral stricture in a rabbit model. J. Korean Med. Sci. 30, 301–307 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kajbafzadeh, A. M. et al. The application of tissue-engineered preputial matrix and fibrin sealant for urethral reconstruction in rabbit model. Int. Urol. Nephrol. 46, 1573–1580 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Kajbafzadeh, A. M. et al. Future prospects for human tissue engineered urethra transplantation: decellularization and recellularization-based urethra regeneration. Ann. Biomed. Eng. 45, 1795–1806 (2017).

    Article  PubMed  Google Scholar 

  83. Simoes, I. N. et al. Acellular urethra bioscaffold: decellularization of whole urethras for tissue engineering applications. Sci. Rep. 7, 41934 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dorin, R. P., Pohl, H. G., De Filippo, R. E., Yoo, J. J. & Atala, A. Tubularized urethral replacement with unseeded matrices: what is the maximum distance for normal tissue regeneration? World J. Urol. 26, 323–326 (2008).

    Article  PubMed  Google Scholar 

  85. Anwar, H., Dave, B. & Seebode, J. J. Replacement of partially resected canine urethra by polytetrafluoroethylene. Urology 24, 583–586 (1984).

    Article  CAS  PubMed  Google Scholar 

  86. Olsen, L., Bowald, S., Busch, C., Carlsten, J. & Eriksson, I. Urethral reconstruction with a new synthetic absorbable device. An experimental study. Scand. J. Urol. Nephrol. 26, 323–326 (1992).

    Article  CAS  PubMed  Google Scholar 

  87. Lv, X. et al. Electrospun poly(L-lactide)/poly(ethylene glycol) scaffolds seeded with human amniotic mesenchymal stem cells for urethral epithelium repair. Int. J. Mol. Sci. 17, 1262 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  88. Sartoneva, R. et al. Characterizing and optimizing poly-L-lactide-co-epsilon-caprolactone membranes for urothelial tissue engineering. J. R. Soc. Interface 9, 3444–3454 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sartoneva, R. et al. Comparison of a poly-L-lactide-co-epsilon-caprolactone and human amniotic membrane for urothelium tissue engineering applications. J. R. Soc. Interface 8, 671–677 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Jia, W. et al. Urethral tissue regeneration using collagen scaffold modified with collagen binding VEGF in a beagle model. Biomaterials 69, 45–55 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Tang, H. et al. Collagen scaffolds tethered with bFGF promote corpus spongiosum regeneration in a beagle model. Biomed. Mater. 13, 031001 (2018).

    Article  PubMed  Google Scholar 

  92. Nuininga, J. E. et al. Urethral reconstruction of critical defects in rabbits using molecularly defined tubular type I collagen biomatrices: key issues in growth factor addition. Tissue Eng. Part. A 16, 3319–3328 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Lee, K., Silva, E. A. & Mooney, D. J. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J. R. Soc. Interface 8, 153–170 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Fu, Q. & Cao, Y. L. Tissue engineering and stem cell application of urethroplasty: from bench to bedside. Urology 79, 246–253 (2012).

    Article  PubMed  Google Scholar 

  95. Orabi, H., AbouShwareb, T., Zhang, Y., Yoo, J. J. & Atala, A. Cell-seeded tubularized scaffolds for reconstruction of long urethral defects: a preclinical study. Eur. Urol. 63, 531–538 (2013).

    Article  PubMed  Google Scholar 

  96. Zou, Q. & Fu, Q. Tissue engineering for urinary tract reconstruction and repair: progress and prospect in China. Asian J. Urol. 5, 57–68 (2018).

    Article  PubMed  Google Scholar 

  97. Nagele, U. et al. In vitro investigations of tissue-engineered multilayered urothelium established from bladder washings. Eur. Urol. 54, 1414–1422 (2008).

    Article  PubMed  Google Scholar 

  98. Sharma, A. K. & Cheng, E. Y. Growth factor and small molecule influence on urological tissue regeneration utilizing cell seeded scaffolds. Adv. Drug. Deliv. Rev. 82–83, 86–92 (2015).

    Article  PubMed  CAS  Google Scholar 

  99. Davis, N. F. et al. Biomaterials and regenerative medicine in urology. Adv. Exp. Med. Biol. 1107, 189–198 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Panda, A. Stem cell in urology — are we at the cusp of a new era? Transl Androl. Urol. 7, 653–658 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Peters, E. B. Endothelial progenitor cells for the vascularization of engineered tissues. Tissue Eng. Part. B Rev. 24, 1–24 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Mikami, H. et al. Two-layer tissue engineered urethra using oral epithelial and muscle derived cells. J. Urol. 187, 1882–1889 (2012).

    Article  PubMed  Google Scholar 

  103. De Filippo, R. E., Kornitzer, B. S., Yoo, J. J. & Atala, A. Penile urethra replacement with autologous cell-seeded tubularized collagen matrices. J. Tissue Eng. Regen. Med. 9, 257–264 (2015).

    Article  PubMed  CAS  Google Scholar 

  104. Xie, M. et al. Tissue-engineered buccal mucosa using silk fibroin matrices for urethral reconstruction in a canine model. J. Surg. Res. 188, 1–7 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Wang, F. et al. Urethral reconstruction with tissue-engineered human amniotic scaffold in rabbit urethral injury models. Med. Sci. Monit. 20, 2430–2438 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Liu, Y. et al. Urethral reconstruction with autologous urine-derived stem cells seeded in three-dimensional porous small intestinal submucosa in a rabbit model. Stem Cell Res. Ther. 8, 63 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Liu, J. S. et al. Bone marrow stem/progenitor cells attenuate the inflammatory milieu following substitution urethroplasty. Sci. Rep. 6, 35638 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang, Y., Fu, Q., Zhao, R. Y. & Deng, C. L. Muscular tubes of urethra engineered from adipose-derived stem cells and polyglycolic acid mesh in a bioreactor. Biotechnol. Lett. 36, 1909–1916 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Wang, D. J. et al. Repair of urethral defects with polylactid acid fibrous membrane seeded with adipose-derived stem cells in a rabbit model. Connect. Tissue Res. 56, 434–439 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Chen, C. et al. Transplantation of amniotic scaffold-seeded mesenchymal stem cells and/or endothelial progenitor cells from bone marrow to efficiently repair 3-cm circumferential urethral defect in model dogs. Tissue Eng. Part. A 24, 47–56 (2018).

    Article  CAS  PubMed  Google Scholar 

  111. Atala, A., Guzman, L. & Retik, A. B. A novel inert collagen matrix for hypospadias repair. J. Urol. 162, 1148–1151 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Fossum, M., Skikuniene, J., Orrego, A. & Nordenskjold, A. Prepubertal follow-up after hypospadias repair with autologous in vitro cultured urothelial cells. Acta Paediatr. 101, 755–760 (2012).

    Article  PubMed  Google Scholar 

  113. Orabi, H., Safwat, A. S., Shahat, A. & Hammouda, H. M. The use of small intestinal submucosa graft for hypospadias repair: pilot study. Arab. J. Urol. 11, 415–420 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Romagnoli, G., De Luca, M., Faranda, F., Franzi, A. T. & Cancedda, R. One-step treatment of proximal hypospadias by the autologous graft of cultured urethral epithelium. J. Urol. 150, 1204–1207 (1993).

    Article  CAS  PubMed  Google Scholar 

  115. Romagnoli, G. et al. Treatment of posterior hypospadias by the autologous graft of cultured urethral epithelium. N. Engl. J. Med. 323, 527–530 (1990).

    Article  CAS  PubMed  Google Scholar 

  116. Raya-Rivera, A. et al. Tissue-engineered autologous urethras for patients who need reconstruction: an observational study. Lancet 377, 1175–1182 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Ottenhof, S. R. et al. Architecture of the corpus spongiosum: an anatomical study. J. Urol. 196, 919–925 (2016).

    Article  PubMed  Google Scholar 

  118. Erol, A., Baskin, L. S., Li, Y. W. & Liu, W. H. Anatomical studies of the urethral plate: why preservation of the urethral plate is important in hypospadias repair. BJU Int. 85, 728–734 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Hayashi, Y. et al. Characterization of the urethral plate and the underlying tissue defined by expression of collagen subtypes and microarchitecture in hypospadias. Int. J. Urol. 18, 317–322 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Camoglio, F. S., Bruno, C., Zambaldo, S. & Zampieri, N. Hypospadias anatomy: elastosonographic evaluation of the normal and hypospadic penis. J. Pediatr. Urol. 12, 199.e1–199.e5 (2016).

    Article  Google Scholar 

  121. Bhat, A. et al. Comparison of variables affecting the surgical outcomes of tubularized incised plate urethroplasty in adult and pediatric hypospadias. J. Pediatr. Urol. 12, 108.e1–108.e7 (2016).

    Article  CAS  Google Scholar 

  122. Feng, C. et al. Evaluation of the biocompatibility and mechanical properties of naturally derived and synthetic scaffolds for urethral reconstruction. J. Biomed. Mater. Res. A 94, 317–325 (2010).

    Article  PubMed  CAS  Google Scholar 

  123. Feng, C., Xu, Y. M., Fu, Q., Zhu, W. D. & Cui, L. Reconstruction of three-dimensional neourethra using lingual keratinocytes and corporal smooth muscle cells seeded acellular corporal spongiosum. Tissue Eng. Part. A 17, 3011–3019 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Abbas, T. O., Mahdi, E., Hasan, A., AlAnsari, A. & Pennisi, C. P. Current status of tissue engineering in the management of severe hypospadias. Front. Pediatr. 5, 283 (2017).

    Article  PubMed  Google Scholar 

  125. Mundy, A. R. & Andrich, D. E. Urethral strictures. BJU Int. 107, 6–26 (2011).

    Article  PubMed  Google Scholar 

  126. Hofer, M. D. et al. Androgen supplementation in rats increases the inflammatory response and prolongs urethral healing. Urology 85, 691–697 (2015).

    Article  PubMed  Google Scholar 

  127. Ram-Liebig, G. et al. Regulatory challenges for autologous tissue engineered products on their way from bench to bedside in Europe. Adv. Drug. Deliv. Rev. 82–83, 181–191 (2015).

    Article  PubMed  CAS  Google Scholar 

  128. Lu, L. et al. Tissue engineered constructs: perspectives on clinical translation. Ann. Biomed. Eng. 43, 796–804 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Sharma, P. et al. Aligned fibers direct collective cell migration to engineer closing and nonclosing wound gaps. Mol. Biol. Cell 28, 2579–2588 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Han, K. et al. EW-7197 eluting nano-fiber covered self-expandable metallic stent to prevent granulation tissue formation in a canine urethral model. PLoS One 13, e0192430 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Bury, M. I. et al. The promotion of functional urinary bladder regeneration using anti-inflammatory nanofibers. Biomaterials 35, 9311–9321 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhang, K. et al. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: an in vitro evaluation of biomimetic mechanical property and cell growth environment. Acta Biomater. 50, 154–164 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank S. Macomber who contributed to the production of the figures for this article.

Author information

Authors and Affiliations

Authors

Contributions

Y.Y.C., M.I.B., E.M.Y., M.D.H. and A.K.S. researched data for the article, Y.Y.C., E.Y.C. and A.K.S. made substantial contributions to discussion of content, Y.Y.C. wrote the manuscript and all authors reviewed and edited the article before submission.

Corresponding author

Correspondence to Arun K. Sharma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Urology thanks W. Daamen, P. de Graaf and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, Y.Y., Bury, M.I., Yura, E.M. et al. The current state of tissue engineering in the management of hypospadias. Nat Rev Urol 17, 162–175 (2020). https://doi.org/10.1038/s41585-020-0281-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-020-0281-4

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research