Skip to main content
Log in

Load Partitioning and Strain-Induced Martensite Formation during Tensile Loading of a Metastable Austenitic Stainless Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In-situ high-energy X-ray diffraction and material modeling are used to investigate the strain-rate dependence of the strain-induced martensitic transformation and the stress partitioning between austenite and α′ martensite in a metastable austenitic stainless steel during tensile loading. Moderate changes of the strain rate alter the strain-induced martensitic transformation, with a significantly lower α′ martensite fraction observed at fracture for a strain rate of 10−2 s−1, as compared to 10−3 s−1. This strain-rate sensitivity is attributed to the adiabatic heating of the samples and is found to be well predicted by the combination of an extended Olson–Cohen strain-induced martensite model and finite-element simulations for the evolving temperature distribution in the samples. In addition, the strain-rate sensitivity affects the deformation behavior of the steel. The α′ martensite transformation at high strains provides local strengthening and extends the time to neck formation. This reinforcement is witnessed by a load transfer from austenite to α′ martensite during loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. MATLAB is a registered trademark of The Mathworks, Inc., Natick, MA.

References

  1. G.B. Olson and M. Cohen: Metall. Trans. A, 1975, vol. 6A, pp. 791–95.

    CAS  Google Scholar 

  2. V.F. Zackay, E.R. Parker, D. Fahr, and R. Busch: Trans. Am. Soc. Met., 1967, vol. 60, pp. 252–59.

    CAS  Google Scholar 

  3. J.P. Bressanelli and A. Moskowitz: Trans. ASM, 1965, vol. 58, pp. 499–509.

    CAS  Google Scholar 

  4. P. Hedström, U. Lienert, J. Almer, and M. Odén: Scripta Mater., 2007, vol. 56, pp. 213–16.

    Article  Google Scholar 

  5. E.R. Parker and V.F. Zackay: Eng. Fract. Mech., 1973, vol. 5, pp. 147–65.

    Article  CAS  Google Scholar 

  6. T. Angel: JISI, 1954, May, pp. 165–74.

  7. G.W. Powell, E.R. Marshall, and W.A. Backhofen: ASM Trans. Q., 1958, vol. 50, pp. 478–79.

    Google Scholar 

  8. G.L. Huang, D.K. Matlock, and G. Krauss: Metall. Trans. A, 1989, vol. 20A, pp. 1239–46.

    ADS  CAS  Google Scholar 

  9. L.-E. Lindgren: AIP Conf. Proc., 2004, vol. 712, pp. 1748–53.

    Article  ADS  CAS  Google Scholar 

  10. Y. Tomita and T. Iwamoto: Int. J. Mech. Sci., 1995, vol. 37 (12), pp. 1295–1305.

    Article  Google Scholar 

  11. L.-E. Lindgren, H. Alberg, and K. Domkin: Proc. Computational Plasticity VII, Barcelona, Spain, 2003, D.R.J Owen and E. Oñate, eds., International Center for Numerical Methods in Engineering, Barcelona, Spain, CD-ROM.

  12. B.D. Cullity: Elements of X-Ray Diffraction, 3rd ed., Addison-Wesley, Reading, MA, 1967, p. 391.

    Google Scholar 

  13. A.K. De, D.C. Murdock, M.C. Mataya, J.G. Speer, and D.K. Matlock: Scripta Mater., 2004, vol. 50, pp. 1445–49.

    Article  CAS  Google Scholar 

  14. M.J. Dickson: J. Appl. Crystallogr., 1969, vol. 2, pp. 176–80.

    Article  CAS  Google Scholar 

  15. M.L. Young, J.D. Almer, M.R. Daymond, D.R. Haeffner, and D.C. Dunand: Acta Mater., 2007, vol. 55, pp. 1999–2011.

    Article  CAS  Google Scholar 

  16. J. Almer, U. Lienert, R.L. Peng, C. Schlauer, and M. Odén: J. Appl. Phys., 2003, vol. 94 (1), pp. 697–702.

    Article  ADS  CAS  Google Scholar 

  17. V. Hauk: Structural and Residual Stress Analysis by Nondestructive Methods, Elsevier, Amsterdam, The Netherlands, 1997, p. 234.

    MATH  Google Scholar 

  18. B.B. He and K.L. Smith: SEM Ann. Conf. Proc., Houston, TX, 1998, pp. 217–20.

  19. M.R. Daymond, C.N. Tomé, and M.A.M. Bourke: Acta Mater., 2000, vol. 48, pp. 553–64.

    Article  CAS  Google Scholar 

  20. Y. Tomita and Y. Shibutani: Int. J. Plast., 2000, vol. 16, pp. 769–89.

    Article  MATH  CAS  Google Scholar 

  21. R.G. Stringfellow, D.M. Parks, and G.B. Olson: Acta Metall. Mater., 1992, vol. 40 (7), pp. 1703–16.

    Article  CAS  Google Scholar 

  22. T. Iwamoto, T. Tsuta, and Y. Tomita: Int. J. Mech. Sci., 1998, vol. 40 (2–3), pp. 173–82.

    Article  Google Scholar 

  23. J.C. Simo and T.J.R. Hughes: Computational Inelasticity, Springer-Verlag, New York, NY, 1998, vol. 7, pp. 113–53.

    MATH  Google Scholar 

  24. T. Belytschko, W.K. Liu, and B. Moran: Nonlinear Finite Elements for Continua and Structures, John Wiley & Sons, New York, NY, 2000, pp. 277–85.

    MATH  Google Scholar 

  25. K. Domkin: Doctoral Thesis, Luleå University of Technology, Luleå, Sweden, 2005, pp. 137–46.

  26. T. Iwamoto: Int. J. Plast., 2004, vol. 20, pp. 841–69.

    Article  MATH  CAS  Google Scholar 

  27. L.E. Murr, K.P. Staudhammer, and S.S. Hecker: Metall. Trans. A, 1982, vol. 13A, pp. 627–35.

    ADS  Google Scholar 

  28. M. Azrin, G.B. Olson, and R.A. Gagne: Mater. Sci. Eng., 1976, vol. 23, pp. 33–41.

    Article  CAS  Google Scholar 

  29. S.S. Hecker, M.G. Stout, K.P. Staudhammer, and J.L. Smith: Metall. Trans. A, 1982, vol. 13A, pp. 619–26.

    ADS  Google Scholar 

  30. P.J. Ferreira, J.B. Vander Sande, M. Amaral Fortes, and A. Kyrolainen: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3091–3101.

    Article  CAS  Google Scholar 

  31. J. Talonen, P. Nenonen, G. Pape, and H. Hänninen: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 421–32.

    Article  CAS  Google Scholar 

  32. D. Peckner and I.M. Bernstein: Handbook of Stainless Steels, McGraw-Hill, New York, NY, 1977, pp. 4–26.

    Google Scholar 

  33. J. Talonen: Doctoral Thesis, Helsinki University of Technology, Helsinki, Finland, 2007, pp. 92–100.

  34. A.K. De, J.G. Speer, D.K. Matlock, D.C. Murdock, M.C. Mataya, and R.J. Comstock, Jr.: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1875–86.

    Article  CAS  Google Scholar 

  35. K. Spencer, J.D. Embury, K.T. Conlon, M. Véron, and Y. Bréchet: Mater. Sci. Eng., A, 2004, vols. 387–389, pp. 873–81.

    Google Scholar 

  36. J. Johansson and M. Odén: Metall. Mater. Trans. A, 2000, vol. 31, pp. 1557–70.

    Article  Google Scholar 

  37. J.J. Moverare and M. Odén: Metall. Mater. Trans. A, 2002, vol. 33, pp. 57–71.

    Article  Google Scholar 

  38. P. Hedström, U. Lienert, J. Almer, and M. Odén: Mater. Lett., 2008, vol. 62 (2), pp. 338–40.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Advanced Materials Science and Engineering (AMASE) Master Programme student Tao Qian for the work done with material modeling. The work was financially supported by the Swedish Research Council and the Outokumpu Research Foundation. Use of the APS was supported by the United States Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Hedström.

Additional information

Manuscript submitted September 26, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hedström, P., Lindgren, L.E., Almer, J. et al. Load Partitioning and Strain-Induced Martensite Formation during Tensile Loading of a Metastable Austenitic Stainless Steel. Metall Mater Trans A 40, 1039–1048 (2009). https://doi.org/10.1007/s11661-009-9807-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-9807-3

Keywords

Navigation