Skip to main content
Log in

Electrostatic forces and geometry of organic molecules. Part I. Saturated molecules with tetrahedral fragments

  • Published:
Review Journal of Chemistry Aims and scope Submit manuscript

Abstract

A new qualitative approach for analysis of organic molecules geometry, which can be considered as a development of known VSEPR concept is suggested. The core of the approach is electrostatic model, based on the division of the total electron density into an isotropic component which after summation with the nuclear charges turn them into point positive charges (PPCs), and an anisotropic component, tied to the local electron densities (LEDs) of chemical bonds and lone pairs of electrons (LPs). Electrostatic forces (ESFs) affecting the LEDs and PPCs in typical tetrahedral molecular fragments with central carbon atom or heteroatom are considered in detail. The procedure of conditional fixation of PPCs followed by evaluation of perturbing electrostatic forces arising in passing from a particular molecule, or molecular conformation, to another one is applied. Using the existing experimental and ab initio calculation data the model capabilities are demonstrated for typical organic molecules consisting of Н, С, N, O, F, Si, S and Cl atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ED:

electron density

EN:

electronegativity

ESF:

electrostatic force

S-ESF:

short-range ESF

M-ESF:

middle-range ESF

L-ESF:

long-range ESF

FM:

fixed molecule

IM:

idealized molecule

LED:

local electron density

LP:

lone pair of electrons

MEI direction:

direction of the most effective interaction

MW:

microwave spectroscopy

PPC:

point positive charge

References

  1. Parr, R.G., Ayers, P.W., and Nalewajski, R.F., J. Phys. Chem. A, 2005, vol. 109, p. 3957.

    Article  CAS  Google Scholar 

  2. Lewis, G.N., J. Am. Chem. Soc., 1916, vol. 38, p. 762.

    Article  CAS  Google Scholar 

  3. Popelier, P.L.A. and Gillespie, R.J., Chemical Bonding and Molecular Geometry from Lewis to Electron Densities, Oxford: Oxford Univ. Press, 2001.

    Google Scholar 

  4. Brown, I.D., Chem. Rev., 2009, vol. 109, p. 6858.

    Article  CAS  Google Scholar 

  5. Streitwieser, A., Molecular orbital theory for organic chemists, in Pioneers of Quantum Chemistry, Washington, DC: Am. Chem. Soc., 2013, vol. 1122, ch. 9, p. 275.

    Chapter  Google Scholar 

  6. Bader, R.F.W., Atoms in Molecules: A Quantum Theory, Oxford: Clarendon, 1994.

    Google Scholar 

  7. Causá, M., Savin, A., and Silvi, B., Found. Chem., 2014, vol. 16, p. 3.

    Article  CAS  Google Scholar 

  8. Lüchow, A.J., Comput. Chem., 2014, vol. 35, p. 854.

    Article  CAS  Google Scholar 

  9. Ayers, P.L., Boyd, R.J., Bultinck, P., Caffarel, M., Carbó-Dorca, R., Causá, M., Cioslowski, J., Contreras-Garcia, J., Cooper, D.L., and Coppens, P., Gatti C., Grabowsky, S., Lazzeretti, P., Macchi, P., Pendás, A.M., Popelier, P.L.A., Ruedenberg, K., Rzepa, H., Savin, A., Sax, A., Schwarz, W.H.E., Shahbazian, S., Silvi, B., Solá, M., and Tsirelson, V., Comput. Theor. Chem., 2015, vol. 1053, p. 2.

    Article  CAS  Google Scholar 

  10. Feynman, R.P., Phys. Rev., 1939, vol. 56, p. 340.

    Article  CAS  Google Scholar 

  11. Hernández-Trujillo, J., Cortés-Guzmán, F., Fang, D.C., and Bader, R.F.W., Faraday Discuss., 2, vol. 135, p. 79.

  12. Martín-Pendás, A., and Hernández-Trujillo, J., J. Chem. Phys., 2012, vol. 137, 134101.

    Article  CAS  Google Scholar 

  13. Maza, J.R., Jenkins, S., Kirk, S.R.M., Anderson, J.S., and Ayers, P.W., Phys. Chem. Chem. Phys., 2013, vol. 15, p. 17823.

    Article  CAS  Google Scholar 

  14. Nakatsuji, H., J. Am. Chem. Soc., 1973, vol. 95, p. 345.

    Article  CAS  Google Scholar 

  15. Bader, R.F.W., J. Phys. Chem. A, 2010, vol. 114, p. 7431.

    Article  CAS  Google Scholar 

  16. Bader, R.F.W., Beddall, P.M., and Peslak, J., J. Chem. Phys., 1973, vol. 58, p. 557.

    Article  CAS  Google Scholar 

  17. Hirshfeld, F.L., Theor. Chim. Acta, 1997, vol. 44, p. 129.

    Article  Google Scholar 

  18. Bader, R.F.W., J. Mol. Struct: THEOCHEM, 2010, vol. 943, p. 2.

    Article  CAS  Google Scholar 

  19. Bader, R.F.W. and Essen, H., J. Chem. Phys., 1984, vol. 80, p. 1943.

    Article  CAS  Google Scholar 

  20. Becke, A.D. and Edgecombe, K.E., J. Chem. Phys., 1990, vol. 92, p. 5397.

    Article  CAS  Google Scholar 

  21. Scemama, A., Chaquin, P., and Caffarel, M., J. Chem. Phys., 2004, vol. 121, p. 1725.

    Article  CAS  Google Scholar 

  22. Coppens, P., X-Ray Charge Densities and Chemical Bonding, Oxford: Oxford Univ. Press, 1997.

    Google Scholar 

  23. Menéndez, M., Pendás, A.M., Braïda, B., and Savin, A., Comput. Theor. Chem., 2014, vol. 1053, p. 142.

    Article  CAS  Google Scholar 

  24. Lüchow, A. and Petz, R., J. Comput. Chem., 2011, vol. 32, p. 2619.

    Article  CAS  Google Scholar 

  25. Nalewajski, R.F. and Gurdek, P., Struct. Chem., 2012, vol. 23, p. 1383.

    Article  CAS  Google Scholar 

  26. Mondal, S. and Prathapa, S.J., and Van Smaalen, S., Acta Crystallogr., Sect. A: Found. Crystallogr., 2012, vol. 68, p. 568.

    Article  CAS  Google Scholar 

  27. Macchi, P., Crystallogr. Rev., 2013, vol. 19, p. 58.

    Article  CAS  Google Scholar 

  28. Guo, C.-S., Van-Hove, M.A., Zhang, R.-Q., and Minot, C., Langmuir, 2010, vol. 26, p. 16271.

    Article  CAS  Google Scholar 

  29. Gatti, C. and Macchi, P., Modern Charge Density Analysis, Berlin: Springer, 2012.

    Book  Google Scholar 

  30. Sanderson, R.T., J. Am. Chem. Soc., 1983, vol. 105, p. 2259.

    Article  CAS  Google Scholar 

  31. Parr, R.G. and Pearson, R.G., J. Am. Chem. Soc., 1983, vol. 105, p. 7512.

    Article  CAS  Google Scholar 

  32. Comba, P. and Boeyens, J.C., A. Struct. Bonding (Berlinm, Ger.), 2013, vol. 148, p. 137.

    Article  CAS  Google Scholar 

  33. Murry, J.E. and Lectka, T., Acc. Chem. Res., 1992, vol. 25, p. 47.

    Article  Google Scholar 

  34. Castillo, N. and Boyd, R.J., Chem. Phys. Lett., 2005, vol. 403, p. 47.

    Article  CAS  Google Scholar 

  35. Prathapa, S.J., Held, J., and Van Smaalen, S., Z. Anorg. Allg. Chem., 2013, vol. 639, p. 2047.

    Article  CAS  Google Scholar 

  36. Ruedenberg, K. and Schwarz, W.H.E., J. Chem. Phys., 1990, vol. 92, p. 4956.

    Article  CAS  Google Scholar 

  37. Zheng, S.J., Hada, M., and Nakatsuji, H., Theor. Chim. Acta, 1996, vol. 93, p. 67.

    Article  CAS  Google Scholar 

  38. Lobayan, R.M. and Bochicchio, R.C., Lain, L., and Torre, A., J. Phys. Chem. A, 2007, vol. 111, p. 3166.

    Article  CAS  Google Scholar 

  39. Mikosch, J., Trippel, S., Eichhorn, C., Otto, R., Lourderaj, U., Zhang, J.X., Hase, W.L., Weidemüller, M., and Wester, R., Science, 2008, vol. 319, p. 183.

    Article  CAS  Google Scholar 

  40. Roy, D.K., Balanarayan, P., and Gadre, S.R., J. Chem. Sci., 2009, vol. 121, p. 815.

    Article  CAS  Google Scholar 

  41. Deslongchamps, G. and Deslongchamps, P., Org. Biomol. Chem., 2011, vol. 9, p. 5321.

    Article  CAS  Google Scholar 

  42. Bonaccorsi, R., Scrocco, E., and Tomasi, J., J. Chem. Phys., 1970, vol. 52, p. 5270.

    Article  CAS  Google Scholar 

  43. Pathak, R.K. and Gadre, S.R., J. Chem. Phys., 1990, vol. 93, p. 1770.

    Article  CAS  Google Scholar 

  44. Kumar, A. and Gadre, S.R., J. Chem. Theory Comput., 2016, vol. 12, no. 4, p. 1705. doi 10.1021/acs.jctc.6b00073

    Article  CAS  Google Scholar 

  45. Polo, V., Andres, J., Berski, S., Domingo, L.R., and Silvi, B., J. Phys. Chem. A, 2008, vol. 112, p. 7128.

    Article  CAS  Google Scholar 

  46. Earnshow, S., Trans. Cambridge Philos. Soc., 1842, vol. 7, p. 97.

    Google Scholar 

  47. Gillespie, R.J. and Robinson, E., Angew. Chem., Int. Ed. Engl., 1996, vol. 35, p. 495.

    Article  CAS  Google Scholar 

  48. Cortés-Guzmán, F., Cuevas, G., Maríın-Pendás, A., and Hernández-Trujillo, J., Phys. Chem. Chem. Phys., 2015, vol. 17, p. 19021.

    Article  CAS  Google Scholar 

  49. Bader, R.F.W., Coord. Chem. Rev., 2000, vol. 197, p. 71.

    Article  CAS  Google Scholar 

  50. Scheiner, S., J. Chem. Phys., 2011, vol. 134, 164313.

    Article  CAS  Google Scholar 

  51. Duarte, D.J.R., Angelina, E.L., and Peruchena, N.M., Comput. Theor. Chem., 2012, vol. 998, p. 164.

    Article  CAS  Google Scholar 

  52. Liebschner, D., Jelsch, C., Espinosa, E., Lecomte, C., and Chabriere, E., and Guillot, B., J. Phys. Chem. A, 2011, vol. 115, p. 12895.

    Article  CAS  Google Scholar 

  53. Mani, D. and Arunan, E., Phys. Chem. Chem. Phys., 2013, vol. 15, p. 14377.

    Article  CAS  Google Scholar 

  54. Li, Q.-Z., Zhuo, H.-Y., Li, H.-B., Liu, Z-B., Li, W.-Z., and Cheng, J.-B., J. Phys. Chem. A, 2015, vol. 119, p. 2217.

    Article  CAS  Google Scholar 

  55. Goodman, L., Pophristic, V., and Weinhold, F., Acc. Chem. Res., 1999, vol. 12, p. 983.

    Article  CAS  Google Scholar 

  56. Parra, R.D. and Zeng, X.C., J. Phys. Chem. A, 1998, vol. 102, p. 654.

    Article  CAS  Google Scholar 

  57. Onda, M., Tsuda, K., and Kimura, T., J. Mol. Struct., 2005, vol. 733, p. 1.

    Article  CAS  Google Scholar 

  58. Gallaher, K.L., Yokozeki, A., and Bauer, S.H., J. Phys. Chem., 1974, vol. 78, p. 2389.

    Article  CAS  Google Scholar 

  59. Shia, J., Hea, J., and Wang, H.-J., J. Phys. Org. Chem., 2011, vol. 24, p. 65.

    Article  CAS  Google Scholar 

  60. Demaison, J., Breidung, J., Thiel, W., and Papousek, D., Struct. Chem., 1999, vol. 10, p. 129.

    Article  CAS  Google Scholar 

  61. Allen, M.D., Pesch, T.C., Robinson, J.S., Apponi, A.J., Grotjahn, D.B., and Ziurys, L.M., Chem. Phys. Lett., 1998, vol. 293, p. 397.

    Article  CAS  Google Scholar 

  62. Suresh, C.H. and Koga, N., J. Am. Chem. Soc., 2012, vol. 124, p. 1790.

    Article  CAS  Google Scholar 

  63. Gray, D.L. and Robiette, A.G., Mol. Phys., 1979, vol. 37, p. 1901.

    Article  CAS  Google Scholar 

  64. Duncan, J.L., McKean, D.C., and Bruce, A.J., J. Mol. Spectrosc., 1979, vol. 74, p. 361.

    Article  CAS  Google Scholar 

  65. Urban, J., Schreiner, P.R., Vacek, G., Schleyer, P.R., Huang, J.Q., and Leszczynski, J., Chem. Phys. Lett., 1997, vol. 264, p. 441.

    Article  CAS  Google Scholar 

  66. Dixon, R.W. and Kollman, P.A., J. Comput. Chem., 1997, vol. 18, p. 1632.

    Article  CAS  Google Scholar 

  67. Graczyk, P.P. and Mikolajczyk, M., in Anomeric Effect: Origin and Consequences, New York: Wiley, 1994, vol. 21, p. 159.

    Google Scholar 

  68. Kumar, A., Gadre, S.R., Mohan, N., and Suresh, C.H., J. Phys. Chem. A, 2014, vol. 118, p. 526.

    Article  CAS  Google Scholar 

  69. Hayashi, M. and Kato, H., Bull. Chem. Soc. Jpn., 1980, vol. 53, p. 2701.

    Article  CAS  Google Scholar 

  70. Niide, Y. and Hayashi, M., J. Mol. Spectrosc., 2003, vol. 220, p. 65.

    Article  CAS  Google Scholar 

  71. Tsuchida, E., Kanada, Y., and Tsukada, M., Chem. Phys. Lett., 1999, vol. 311, p. 236.

    Article  CAS  Google Scholar 

  72. Takagi, K. and Kojima, T., J. Phys. Soc. Jpn., 1971, vol. 30, p. 1145.

    Article  CAS  Google Scholar 

  73. Mack, H.-G., Christen, D., and Oberhamer, H., J. Mol. Struct., 1988, vol. 190, p. 215.

    Article  CAS  Google Scholar 

  74. Duarte, D.J.R., Angelina, E.L., and Peruchena, N.M., Comput. Theor. Chem., 2012, vol. 998, p. 164.

    Article  CAS  Google Scholar 

  75. Novakovskaya, Y.V., Struct. Chem., 2012, vol. 23, p. 1253.

    Article  CAS  Google Scholar 

  76. Khursana, S.L. and Antonovsky, V.L., Russ. Chem. Bull., 2003, vol. 52, p. 1312.

    Article  Google Scholar 

  77. Hagen, K., Hedberg, K., John, E.O., Kirchmeier, R.L., and Shreeve, J.M., J. Phys. Chem. A, 1998, vol. 102, p. 5106.

    Article  CAS  Google Scholar 

  78. Durig, J.R., Ng, K.W., Zheng, C., and Shen, S., Struct. Chem., 2004, vol. 15, p. 149.

    Article  CAS  Google Scholar 

  79. Neugebauer, A. and Hafelinger, G., J. Mol. Struct.: THEOCHEM, 2002, vol. 578, p. 229.

    Article  CAS  Google Scholar 

  80. Tam, H.S., Choe, J.I., and Harmony, M.D., J. Phys. Chem., 1991, vol. 95, p. 9267.

    Article  CAS  Google Scholar 

  81. Harmony, M.D., J. Chem. Phys., 1990, vol. 93, p. 7522.

    Article  CAS  Google Scholar 

  82. Flood, E., Pulay, P., and Boggs, J.E., J. Am. Chem. Soc., 1997, vol. 99, p. 5570.

    Article  Google Scholar 

  83. Lide, D.R., J. Chem. Phys., 1960, vol. 33, p. 1514.

    Article  CAS  Google Scholar 

  84. Herrebout, W.A., Van der Veken, B.J., Wang, A., and Durig, J.R., J. Phys. Chem., 1995, vol. 99, p. 578.

    Article  CAS  Google Scholar 

  85. Antolínez, S., López, J.C., and Alonso, J.L., J. Chem. Soc., Faraday Trans., 1997, vol. 93, p. 1291.

    Article  Google Scholar 

  86. Lide, D.R., J. Chem. Phys., 1960, vol. 33, p. 1519.

    Article  CAS  Google Scholar 

  87. Hilderbrandt, R.L. and Wieser, J.D., J. Mol. Struct., 1973, vol. 15, p. 27.

    Article  CAS  Google Scholar 

  88. McKean, D.C., Spectrochim. Acta, Part A, 1999, vol. 55, p. 1485.

    Article  Google Scholar 

  89. Niide, Y. and Hayashi, M., J. Mol. Spectrosc., 2002, vol. 216, p. 52.

    Article  CAS  Google Scholar 

  90. Pierce, L. and Kilb, R.W., J. Chem. Phys., 1957, vol. 27, p. 108.

    Article  Google Scholar 

  91. Niide, Y. and Hayashi, M., J. Mol. Spectrosc., 2003, vol. 220, p. 65.

    Article  CAS  Google Scholar 

  92. McKean, D.C. and Torto, I., J. Mol. Spectrosc., 2002, vol. 216, p. 363.

    Article  CAS  Google Scholar 

  93. McKean, D.C., J. Phys. Chem. A, 2004, vol. 108, p. 4744.

    Article  CAS  Google Scholar 

  94. Demaison, J., Csaszar, A.G., Kleiner, I., and Mollendal, H., J. Phys. Chem. A, 2007, vol. 111, p. 2574.

    Article  CAS  Google Scholar 

  95. McKean, D.C., J. Chem. Phys., 1983, vol. 79, p. 2095.

    Article  CAS  Google Scholar 

  96. Wollrab, J.E. and Laurie, V.W., J. Chem. Phys., 1968, vol. 48, p. 5058.

    Article  CAS  Google Scholar 

  97. Skaarup, S., Griffin, L.L., and Boggs, J.E., J. Am. Chem. Soc., 1976, vol. 98, p. 3140.

    Article  CAS  Google Scholar 

  98. Florian, J., Leszczynsky, J., Johnson, B.G., and Goodman, L., Mol. Phys., 1997, vol. 91, p. 439.

    Article  CAS  Google Scholar 

  99. Harmony, M.D., Laurie, V.W., Kuczkowski, R.L., Schwendeman, R.H., Ramsay, D.A., Lovas, F.J., Lafferty, W.J., and Maki, A.G., J. Phys. Chem. Ref. Data, 1979, vol. 8, p. 619.

    Article  CAS  Google Scholar 

  100. Demaison, J., Herman, M., and Lievin, J., Int. Rev. Phys. Chem., 2007, vol. 26, p. 391.

    Article  CAS  Google Scholar 

  101. Culot, J.P., in Proc. Fourth Austin Symposium on Gas Phase Molecular Structure, Austin: Univ. Texas, 1972, paper T8.

    Google Scholar 

  102. Durig, J.R., Deeb, H., Darkhalil, I.D., Klaassen, J.J., Gounev, T.K., and Ganguly, A., J. Mol. Struct., 2011, vol. 985, p. 202.

    Article  CAS  Google Scholar 

  103. Adachi, M., Nakagawa, J., and Hayashi, M., J. Mol. Spectrosc., 1982, vol. 91, p. 381.

    Article  CAS  Google Scholar 

  104. Oberhammer, H. and Boggs, J.E., J. Am. Chem. Soc., 1980, vol. 102, p. 7241.

    Article  Google Scholar 

  105. Gillespie, R.J. and Johnson, S.A., Inorg. Chem., 1997, vol. 36, p. 3031.

    Article  CAS  Google Scholar 

  106. Talaty, E.R., Schwartz, A.K., and Simons, G., J. Am. Chem. Soc., 1975, vol. 97, p. 972.

    Article  CAS  Google Scholar 

  107. Hayashi, M. and Kuwada, K., J. Mol. Struct., 1975, vol. 28, p. 147.

    Article  CAS  Google Scholar 

  108. Suenram, R.D., Lovas, F.J., Pereyra, W., and Fraser, G.T., Hight, and Walker, A.R., J. Mol. Spectrosc., 1997, vol. 181, p. 67.

    Article  CAS  Google Scholar 

  109. Hirota, E., Endo, Y., Saito, S., and Duncan, J.L., J. Mol. Spectrosc., 1981, vol. 89, p. 285.

    Article  CAS  Google Scholar 

  110. Fodi, B., McKean, D.C., and Palmer, M.H., J. Mol. Struct.: THEOCHEM, 2000, vol. 500, p. 195.

    Article  CAS  Google Scholar 

  111. Nygaard, L., Spectrochim. Acta, 1966, vol. 22, p. 1261.

    Article  CAS  Google Scholar 

  112. McKean, D.C., J. Mol. Struct., 2002, vol. 642, p. 25.

    Article  CAS  Google Scholar 

  113. Hayashi, M., Fujitake, M., Inagusa, T., and Miyazaki, S., J. Mol. Struct., 1990, vol. 216, p. 9.

    Article  CAS  Google Scholar 

  114. Shiki, Y., Oyamada, M., and Hayashi, M., J. Mol. Spectrosc., 1982, vol. 92, p. 375.

    Article  CAS  Google Scholar 

  115. Palmer, M.H., J. Mol. Struct.: THEOCHEM, 2000, vol. 500, p. 225.

    Article  CAS  Google Scholar 

  116. Papasavva, S., Illinger, K.H., and Kenny, J.E., J. Mol. Struct.: THEOCHEM, 1997, vol. 393, p. 73.

    Article  CAS  Google Scholar 

  117. Graner, G., Hirota, E., Iijima, T., Kuchitsu, K., Ramsay, D.A., Vogt, J., and Vogt, N., in The Landolt-Börnstein Database, New York: Springer, 2014, Group II, vol. 25C.

    Google Scholar 

  118. Hayashi, M. and Ikeda, C., J. Mol. Struct., 1990, vol. 223, p. 207.

    Article  CAS  Google Scholar 

  119. Ikeda, C., Inagusa, T., and Hayashi, M., J. Mol. Spectrosc., 1989, vol. 135, p. 334.

    Article  CAS  Google Scholar 

  120. Buissonneaud, D.Y., Van Mourik, T., and O’Hagan, D., Tetrahedron, 2010, vol. 66, p. 2196.

    Article  CAS  Google Scholar 

  121. Takeo, H., Matsumura, C., and Morino, Y., J. Chem. Phys., 1986, vol. 84, p. 4205.

    Article  CAS  Google Scholar 

  122. Craig, N.C., Chen, A., Suh, K.H., Klee, S., and Mellau, G.C., Winnewisser, B, P., and Winnewisser, M., J. Phys. Chem. A, 1997, vol. 101, p. 9302.

    Article  CAS  Google Scholar 

  123. Sugie, M., Kato, M., Matsumura, C., and Takeo, H., J. Mol. Struct., 1997, vols. 413–414, p. 487.

    Article  Google Scholar 

  124. Stolevik, R. and Hagen, R., J. Mol. Struct., 1995, vols. 352–353, p. 23.

    Article  Google Scholar 

  125. Hayashi, M. and Kato, H., Bull. Chem. Soc. Jpn., 1980, vol. 53, p. 2701.

    Article  CAS  Google Scholar 

  126. Durig, J.R., Liu, J., Guirgis, G.A., and Van der Veken, B.J., Struct. Chem., 1993, vol. 4, p. 103.

    Article  CAS  Google Scholar 

  127. Hayashi, M., Morimoto, Y., and Inada, N., J. Mol. Spectrosc., 1995, vol. 171, p. 328.

    Article  CAS  Google Scholar 

  128. McKean, D.C., Torto, I., and Morrison, A.R., J. Mol. Struct., 1983, vol. 99, p. 101.

    Article  CAS  Google Scholar 

  129. Bader, R.F.W., J. Phys. Chem. A, 2010, vol. 114, p. 7431.

    Article  CAS  Google Scholar 

  130. Bader, R.F.W., J. Phys. Chem. A, 2011, vol. 115, p. 12667.

    Article  CAS  Google Scholar 

  131. McMurry, J.E. and Lectka, T., Acc. Chem. Res., 1992, vol. 25, p. 47.

    Article  CAS  Google Scholar 

  132. Lane, J.R., Contreras-Garcia, J., Piquemal, J.-P., Miller, B.J., and Kjaergaard, H.G., J. Chem. Theory Comput., 2013, vol. 9, p. 3263.

    Article  CAS  Google Scholar 

  133. Davidson, E.R., The World of Quantum Chemistry, Daudel, R. and Pullman, B., Eds., Dordrecht, Netherlands: Reider, 1974.

  134. Boeyens, J.C.A., Found. Chem., 2015, vol. 17, p. 247.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Kirpichenok.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirpichenok, M.A., Titarenko, Z.Y., Vasilevich, N.A. et al. Electrostatic forces and geometry of organic molecules. Part I. Saturated molecules with tetrahedral fragments. Ref. J. Chem. 7, 23–63 (2017). https://doi.org/10.1134/S2079978017010034

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079978017010034

Keywords

Navigation