Skip to main content
Log in

Non-local Poisson structures and applications to the theory of integrable systems

  • Published:
Japanese Journal of Mathematics Aims and scope

Abstract

We develop a rigorous theory of non-local Poisson structures, built on the notion of a non-local Poisson vertex algebra. As an application, we find conditions that guarantee applicability of the Lenard–Magri scheme of integrability to a pair of compatible non-local Poisson structures. We apply this scheme to several such pairs, proving thereby integrability of various evolution equations, as well as hyperbolic equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Artin, Geometric Algebra, Interscience Publishers, Inc., New York-London, 1957.

  2. Barakat A., De Sole A., Kac V.G.: Poisson vertex algebras in the theory of Hamiltonian equations. Jpn. J. Math., 4, 141–252 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Błaszak, Multi-Hamiltonian theory of dynamical systems, Texts Monogr. Phys., Springer-Verlag, 1998.

  4. Carpentier S., De Sole A., Kac V.G.: Some algebraic properties of differential operators. J. Math. Phys., 53, 063501 (2012)

    Article  MathSciNet  Google Scholar 

  5. S. Carpentier, A. De Sole and V.G. Kac, Rational matrix pseudodifferential operators, Selecta Math. (N.S.), to appear (2013), arXiv:1206.4165.

  6. S. Carpentier, A. De Sole and V.G. Kac, Some remarks on non-commutative principal ideal rings, C. R. Math. Acad. Sci. Paris, 351 (2013), 5–8.

    Google Scholar 

  7. Chen H.H., Lee Y.C., Liu C.S.: Integrability of nonlinear Hamiltonian systems by inverse scattering method. Special issue on solitons in physics. Phys. Scripta, 20, 490–492 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  8. Clarkson P.A., Cosgrove C.M.: Painlevé analysis of the nonlinear Schrödinger family of equations. J. Phys. A, 20, 2003–2024 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. De Sole A., Kac V.G.: Finite vs affine W-algebras. Jpn. J. Math., 1, 137–261 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. De Sole A., Kac V.G.: Lie conformal algebra cohomology and the variational complex. Comm. Math. Phys., 292, 667–719 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. De Sole A., Kac V.G.: The variational Poisson cohomolgy. Jpn. J. Math., 8, 1–145 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. De Sole A., Kac V.G., Wakimoto M.: On classification of Poisson vertex algebras. Transform. Groups, 15, 883–907 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. L.A. Dickey, Soliton Equations and Hamiltonian Systems. Second ed., Adv. Ser. Math. Phys., 26, World Sci. Publ., 2003.

  14. Dieudonné J.: Les déterminants sur un corps non commutatif. Bull. Soc. Math. France, 71, 27–45 (1943)

    MathSciNet  MATH  Google Scholar 

  15. I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations, Nonlinear Sci. Theory Appl., John Wiley & Sons, 1993.

  16. B.A. Dubrovin and S.P. Novikov, Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory. (Russian), Uspekhi Mat. Nauk, 44 (1989), no. 6 (270), 29–98; translation in Russian Math. Surveys, 44 (1989), no. 6, 35–124.

  17. Fokas A.S.: On a class of physically important integrable equations. Phys. D, 87, 145–150 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. E. Frenkel, Five lectures on soliton equations, In: Integrable Systems, (eds. C.-L. Terng and K.K. Uhlenbeck), Surv. Differ. Geom., 4, Int. Press, Boston, MA, 1998, pp. 131–180.

  19. Fuchssteiner B., Fokas A.S.: Symplectic structures, their Bäcklund transformations and hereditary symmetries. Phys. D, 4, 47–66 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  20. I.M. Gelfand and I. Dorfman, Schouten bracket and Hamiltonian operators, Funktsional. Anal. i Prilozhen., 14 (1980), no. 3, 71–74.

  21. Kaup D.J., Newell A.C.: An exact solution for a derivative nonlinear Schrödinger equation. J. Mathematical Phys., 19, 798–801 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  22. Magri F.: A simple model of the integrable Hamiltonian equation. J. Math. Phys., 19, 1156–1162 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  23. F. Magri, A geometrical approach to the nonlinear solvable equations, In: Nonlinear Evolution Equations and Dynamical Systems, Lecture Notes in Phys., 120, Springer-Verlag, 1980, pp. 233–263.

  24. Maltsev A.Ya., Novikov S.P.: On the local systems Hamiltonian in the weakly non-local Poisson brackets. Phys. D, 156, 53–80 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. A.G. Meshkov and V.V. Sokolov, Integrable evolution equations with constant separant, Ufa Mathematical Journal, 4 (2012), no. 3, 104–153.

  26. A.V. Mikhaĭlov, A.B. Shabat and V.V. Sokolov, The symmetry approach to the classification of integrable equations, In: Integrability and Kinetic Equations for Solitons, Naukova Dumka, Kiev, 1990, pp. 213–279.

  27. P.J. Olver, Applications of Lie Groups to Differential Equations. Second ed., Grad. Texts in Math., 107, Springer-Verlag, 1993.

  28. Sakovich A., Sakovich S.: The short pulse equation is integrable. J. Phys. Soc. Japan, 74, 239–241 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sanders J.A., Wang J.P.: On recursion operators. Phys. D, 149, 1–10 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Schäfer T., Wayne C.E.: Propagation of ultra-short optical pulses in cubic nonlinear media. Phys. D, 196, 90–105 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. V.V. Sokolov, Hamiltonian property of the Krichever–Novikov equation. (Russian), Dokl. Akad. Nauk SSSR, 277 (1984), no. 1, 48–50.

  32. L.A. Takhtadzhyan and L.D. Faddeev, The Hamiltonian Approach in Soliton Theory, Nauka, Moscow, 1986.

  33. D. Talati and R. Turhan, On a recently introduced fifth-order bi-Hamiltonian equation and trivially related Hamiltonian operators, SIGMA Symmetry Integrability Geom. Methods Appl., 7 (2011), 081.

    Google Scholar 

  34. Wadati M., Konno K., Ichikawa Y.H.: A generalization of inverse scattering method. J. Phys. Soc. Japan, 46, 1965–1966 (1979)

    Article  MathSciNet  Google Scholar 

  35. Wang J.P.: Lenard scheme for two-dimensional periodic Volterra chain. J. Math. Phys., 50, 023506 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto De Sole.

Additional information

Communicated by: Yasuyuki Kawahigashi

Dedicated to Minoru Wakimoto on his 70th birthday

The first author is supported in part by Department of Mathematics, MIT.

The second author is supported in part by an NSF grant, and the Simons Fellowship.

About this article

Cite this article

De Sole, A., Kac, V.G. Non-local Poisson structures and applications to the theory of integrable systems. Jpn. J. Math. 8, 233–347 (2013). https://doi.org/10.1007/s11537-013-1306-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11537-013-1306-z

Keywords and phrases

Mathematics Subject Classification (2010)

Navigation