Skip to main content

Advertisement

Log in

Thermal Stabilization of Wood/Polypropylene Composites Through Addition of Unmodified, Low-Cost Kraft Lignin

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Wood/polymer composites are elegant strategies to produce materials with good performance and reduced cost. However, the addition of a lignocellulosic fiber is often responsible for the decreased thermal stability, decreasing their appeal as building materials. Here, we aimed to improve the thermal stability of wood/polypropylene composites through addition of unmodified, low-cost, abundant, ready-to-use kraft lignin. Besides thermal behavior, the composites were analyzed concerning to water relationships, colorimetric parameters, mechanical properties, and morphological features. The wood/propylene composites with and without lignin showed a very similar morphology with good interaction between matrix and biomasses. Thickness swelling decreased as function of lignin increment. The composites with 4, 12 and 20 wt% of lignin content had temperatures at 10% mass loss shifted toward higher temperatures (332, 350 and 362 °C, respectively) compared to wood/polypropylene (326 °C). Flexural strength of wood/propylene composite was preserved (42 MPa) at 4 wt% of lignin addition and tensile strength was kept unaltered in all ratios of lignin/wood (14–19 MPa).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Magalhães, W.L.E., Pianaro, S.A., Granado, C.J.F., Satyanarayana, K.G.: Preparation and characterization of polypropylene/heart-of-peach palm sheath composite. J. Appl. Polym. Sci. 127, 1285–1294 (2013). https://doi.org/10.1002/app.37633

    Article  Google Scholar 

  2. Mattos, B.D., Misso, A.L., De Cademartori, P.H.G., De Lima, E.A., Magalhães, W.L.E., Gatto, D.A.: Properties of polypropylene composites filled with a mixture of household waste of mate-tea and wood particles. Constr. Build. Mater. 61, 60–68 (2014). https://doi.org/10.1016/j.conbuildmat.2014.02.022

    Article  Google Scholar 

  3. Jakab, E., Várhegyi, G., Faix, O.: Thermal decomposition of polypropylene in the presence of wood-derived materials. J. Anal. Appl. Pyrolysis 56, 273–285 (2000). https://doi.org/10.1016/S0165-2370(00)00101-7

    Article  Google Scholar 

  4. Bao, F.C., Jiang, Z.H., Jiang, X.M., Lu, X.X., Luo, X.Q., Zhang, S.Y.: Differences in wood properties between juvenile wood and mature wood in 10 species grown in China. Wood Sci. Technol. 35, 363–375 (2001). https://doi.org/10.1007/s002260100099

    Article  Google Scholar 

  5. Luo, S., Cao, J., Sun, W.: Evaluation of Kraft lignin as natural compatibilizer in wood flour/polypropylene composites. Polym. Compos. (2015). https://doi.org/10.1002/pc.23821

    Article  Google Scholar 

  6. De Chirico, A., Armanini, M., Chini, P., Cioccolo, G., Provasoli, F., Audisio, G.: Flame retardants for polypropylene based on lignin. Polym. Degrad. Stab. 79, 139–145 (2003). https://doi.org/10.1016/S0141-3910(02)00266-5

    Article  Google Scholar 

  7. Faruk, O., Bledzki, A.K., Fink, H.-P., Sain, M.: Progress report on natural fiber reinforced composites. Macromol. Mater. Eng. 299, 9–26 (2014). https://doi.org/10.1002/mame.201300008

    Article  Google Scholar 

  8. García, M., Hidalgo, J., Garmendia, I.: Composites: part A wood—plastics composites with better fire retardancy and durability performance. Compos. A 40, 1772–1776 (2009). https://doi.org/10.1016/j.compositesa.2009.08.010

    Article  Google Scholar 

  9. Stark, N.M., White, R.H., Mueller, S.A., Osswald, T.A.: Evaluation of various fire retardants for use in wood flour–polyethylene composites. Polym. Degrad. Stab. 95, 1903–1910 (2010). https://doi.org/10.1016/j.polymdegradstab.2010.04.014

    Article  Google Scholar 

  10. Deka, B.K., Maji, T.K.: Effect of silica nanopowder on the properties of wood flour/polymer composite. Polym. Eng. Sci. (2012). https://doi.org/10.1002/pen

    Article  Google Scholar 

  11. Deka, B.K., Maji, T.K.: Effect of SiO2 and nanoclay on the properties of wood polymer nanocomposite. Polym. Bull. 70, 403–417 (2013). https://doi.org/10.1007/s00289-012-0799-6

    Article  Google Scholar 

  12. Toldy, A., Niedermann, P., Rapi, Z., Szolnoki, B.: Flame retardancy of glucofuranoside based bioepoxy and carbon fibre reinforced composites made thereof. Polym. Degrad. Stab. 142, 62–68 (2017). https://doi.org/10.1016/j.polymdegradstab.2017.05.024

    Article  Google Scholar 

  13. Chakar, F.S., Ragauskas, A.J.: Review of current and future softwood kraft lignin process chemistry. Ind. Crops Prod. 20, 131–141 (2004). https://doi.org/10.1016/j.indcrop.2004.04.016

    Article  Google Scholar 

  14. Shu-lai, W.: Formation of charcoal from biomass in a sealed reactor. Ind. Eng. Chem. Res. 31, 1162–1166 (1992)

    Article  Google Scholar 

  15. Antal, M.J.: The art, science, and technology of charcoal production. Ind. Eng. Chem. Res. 42, 1619–1640 (2003)

    Article  Google Scholar 

  16. Nyman, V., Rose, G., Ralston, J.: The colloidal behaviour of kraft lignin and lignosulfonates. Colloids Surf. 21, 125–147 (1986). https://doi.org/10.1016/0166-6622(86)80087-7

    Article  Google Scholar 

  17. Ago, M., Huan, S., Borghei, M., Raula, J., Kauppinen, E.I., Rojas, O.J.: High-throughput synthesis of lignin particles (∼30 nm to ∼2 µm) via aerosol flow reactor: size fractionation and utilization in pickering emulsions. ACS Appl. Mater. Interfaces 8, 23302–23310 (2016). https://doi.org/10.1021/acsami.6b07900

    Article  Google Scholar 

  18. Lee, H.J., Lee, H.K., Lim, E., Song, Y.S.: Synergistic effect of lignin/polypropylene as a compatibilizer in multiphase eco-composites. Compos. Sci. Technol. 118, 193–197 (2015). https://doi.org/10.1016/j.compscitech.2015.08.018

    Article  Google Scholar 

  19. Toriz, G., Denes, F., Young, R.A.: Lignin-polypropylene composites. Part 1: composites from unmodified lignin and polypropylene. Polym. Compos. 23, 806–813 (2002). https://doi.org/10.1002/pc.10478

    Article  Google Scholar 

  20. Ye, D., Li, S., Lu, X., Zhang, X., Rojas, O.J.: Antioxidant and thermal stabilization of polypropylene by addition of butylated lignin at low loadings. ACS Sustain. Chem. Eng. (2016). https://doi.org/10.1021/acssuschemeng.6b01241

    Article  Google Scholar 

  21. Sailaja, R.R.N., Deepthi, M.V.: Mechanical and thermal properties of compatibilized composites of polyethylene and esterified lignin. Mater. Des. 31, 4369–4379 (2010). https://doi.org/10.1016/j.matdes.2010.03.046

    Article  Google Scholar 

  22. Laurichesse, S., Avérous, L.: Chemical modification of lignins: towards biobased polymers. Prog. Polym. Sci. 39, 1266–1290 (2014). https://doi.org/10.1016/j.progpolymsci.2013.11.004

    Article  Google Scholar 

  23. Schorr, D., Diouf, P.N., Stevanovic, T.: Evaluation of industrial lignins for biocomposites production. Ind. Crops Prod. 52, 65–73 (2014)

    Article  Google Scholar 

  24. Irmer, J.: Lignin—A Natural Resource with Huge Potential. https://www.biooekonomie-bw.de/en/articles/dossiers/lignin-a-natural-resource-with-huge-potential/ (2017). Accessed 10 July 2018

  25. Missio, A.L., Mattos, B.D., de Cademartori, P.H., Berger, C., Magalhães, W.L., Haselein, C.R., Gatto, D.A., Petutschnigg, A., Tondi, G.: Impact of tannin as sustainable compatibilizer for wood-polypropylene composites. Polym. Compos. (2017). https://doi.org/10.1002/pc.24498

    Article  Google Scholar 

  26. Carus, M., Eder, A., Dammer, L., Korte, H., Scholz, L., Essel, R., Breitmayer, E., Barth, M.: Wood-plastic composites (WPC) and natural fibre composites (NFC): European and Global Markets 2012 and future trends in automotive and construction. Plast. Addit. Compd. 4, 18–21 (2015)

    Google Scholar 

  27. Amash, A., Zugenmaier, P.: Morphology and properties of isotropic and oriented samples of cellulose fibre–polypropylene composites. Polymer 41, 1589–1596 (2000). https://doi.org/10.1016/S0032-3861(99)00273-6

    Article  Google Scholar 

  28. Beg, M.D.H., Pickering, K.L.: Reprocessing of wood fibre reinforced polypropylene composites. Part I: effects on physical and mechanical properties. Compos. A 39, 1091–1100 (2008). https://doi.org/10.1016/J.COMPOSITESA.2008.04.013

    Article  Google Scholar 

  29. de Cademartori, P.H.G., Claro, F.C., Marinho, N.P., Zanoni, P.R.S., Magalhães, W.L.E.: Co-production of thermoplastic composites with solid residue from enzymatic hydrolysis of recycled paper sludge. J. Clean. Prod. 162, 27–33 (2017). https://doi.org/10.1016/J.JCLEPRO.2017.06.009

    Article  Google Scholar 

  30. Minolta, K.: Precise Color Communication: Color Control from Perception to Instrumentation. (2007)

  31. Kun, D., Pukánszky, B.: Polymer/lignin blends: interactions, properties, applications. Eur. Polym. J. 93, 618–641 (2017). https://doi.org/10.1016/j.eurpolymj.2017.04.035

    Article  Google Scholar 

  32. Saheb, D.N., Jog, J.P.: Natural fiber polymer composites: a review. Adv. Polym. Technol. 18, 351–363 (1999)

    Article  Google Scholar 

  33. Norgren, M., Edlund, H., Wågberg, L.: Aggregation of lignin derivatives under alkaline conditions. Kinetics and aggregate structure. Langmuir 18, 2859–2865 (2002). https://doi.org/10.1021/la011627d

    Article  Google Scholar 

  34. Toledano, A., Serrano, L., Garcia, A., Mondragon, I., Labidi, J.: Comparative study of lignin fractionation by ultrafiltration and selective precipitation. Chem. Eng. J. 157, 93–99 (2010). https://doi.org/10.1016/j.cej.2009.10.056

    Article  Google Scholar 

  35. Nassar, M., MacKay, G.: Mechanism of thermal decomposition of lignin. Wood Fiber Sci. 16, 441–453 (1984)

    Google Scholar 

  36. Doherty, W.O.S., Mousavioun, P., Fellows, C.M.: Value-adding to cellulosic ethanol: lignin polymers. Ind. Crops Prod. 33, 259–276 (2011). https://doi.org/10.1016/j.indcrop.2010.10.022

    Article  Google Scholar 

  37. Liu, R., Peng, Y., Cao, J., Chen, Y.: Comparison on properties of lignocellulosic flour/polymer composites by using wood, cellulose, and lignin flours as fillers. Compos. Sci. Technol. 103, 1–7 (2014). https://doi.org/10.1016/j.compscitech.2014.08.005

    Article  Google Scholar 

  38. Bajwa, S.G., Bajwa, D.S., Holt, G., Coffelt, T., Nakayama, F.: Properties of thermoplastic composites with cotton and guayule biomass residues as fiber fillers. Ind. Crops Prod. 33, 747–755 (2011). https://doi.org/10.1016/J.INDCROP.2011.01.017

    Article  Google Scholar 

  39. Long, J., Chen, P.: Surface characterization of hydrosilylated polypropylene: contact angle measurement and atomic force microscopy. Langmuir 17, 2965–2972 (2001). https://doi.org/10.1021/la001547u

    Article  Google Scholar 

  40. Wenzel, R.N.: Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28, 988–994 (1936)

    Article  Google Scholar 

  41. Zhong, M., Dai, H., Yao, H., Dai, D.: Strong, flexible high-lignin polypropylene blends. Soc. Plast. Eng. 12, 2–4 (2011)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (National Counsel of Technological and Scientific Development) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tainise V. Lourençon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lourençon, T.V., Santilli, B.V., Magalhães, W.L.E. et al. Thermal Stabilization of Wood/Polypropylene Composites Through Addition of Unmodified, Low-Cost Kraft Lignin. Waste Biomass Valor 11, 1555–1563 (2020). https://doi.org/10.1007/s12649-018-0484-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0484-6

Keywords

Navigation