Skip to main content
Log in

Characterization of microbial communities in ethanol biorefineries

  • Environmental Microbiology - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Bacterial contamination of corn-based ethanol biorefineries can reduce their efficiency and hence increase their carbon footprint. To enhance our understanding of these bacterial contaminants, we temporally sampled four biorefineries in the Midwestern USA that suffered from chronic contamination and characterized their microbiomes using both 16S rRNA sequencing and shotgun metagenomics. These microbiotas were determined to be relatively simple, with 13 operational taxonomic units (OTUs) accounting for 90% of the bacterial population. They were dominated by Firmicutes (89%), with Lactobacillus comprising 80% of the OTUs from this phylum. Shotgun metagenomics confirmed our 16S rRNA data and allowed us to characterize bacterial succession at the species level, with the results of this analysis being that Lb. helveticus was the dominant contaminant in this fermentation. Taken together, these results provide insights into the microbiome of ethanol biorefineries and identifies a species likely to be commonly responsible for chronic contamination of these facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Beckner M, Ivey ML, Phister TG (2011) Microbial contamination of fuel ethanol fermentations. Lett Appl Microbiol 53:387–394. https://doi.org/10.1111/j.1472-765X.2011.03124.x

    Article  PubMed  CAS  Google Scholar 

  2. Bischoff KM, Skinner-Nemec KA, Leathers TD (2007) Antimicrobial susceptibility of Lactobacillus species isolated from commercial ethanol plants. J Ind Microbiol Biotechnol 34(11):739–744. https://doi.org/10.1007/s10295-007-0250-4

    Article  PubMed  CAS  Google Scholar 

  3. Bischoff KM, Liu S, Leathers TD, Worthington RE, Rich JO (2009) Modeling bacterial contamination of fuel ethanol fermentation. Biotechnol Bioeng 103:117–122. https://doi.org/10.1002/bit.22244

    Article  PubMed  CAS  Google Scholar 

  4. Bokulich NA, Mills DA (2012) Next-generation approaches to the microbial ecology of food fermentations. BMB Rep 45:377–389. https://doi.org/10.5483/BMBRep.2012.45.7.148

    Article  PubMed  CAS  Google Scholar 

  5. Bokulich NA, Bamforth CW, Mills DA (2012) Brewhouse-resident microbiota are responsible for multi-stage fermentation of American coolship ale. PLoS One 7:e35507. https://doi.org/10.1371/journal.pone.0035507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Bokulich NA, Joseph CML, Allen G, Benson AK, Mills DA (2013) Correction: Next-generation sequencing reveals significant bacterial diversity of botrytized wine. PLoS One. https://doi.org/10.1371/annotation/4d347090-bca1-4184-a5d5-bc2d38baec7d

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bonatelli ML, Quecine MC, Silva MS, Labate CA (2017) Characterization of the contaminant bacterial communities in sugarcane first-generation industrial ethanol production. FEMS Microbiol Lett. https://doi.org/10.1093/femsle/fnx159

    Article  PubMed  Google Scholar 

  8. Carvalho-Netto OV, Carazzolle MF, Mofatto LS, Teixeira PJPL, Noronha MF, Calderón LAL, Mieczkowski PA, Argueso LL, Pereira GAG (2015) Saccharomyces cerevisiae transcriptional reprograming due to bacterial contamination during industrial scale bioethanol production. Microb Cell Fact 14:1–13. https://doi.org/10.1186/s12934-015-0196-6

    Article  CAS  Google Scholar 

  9. Chao A (1984) Nonparametric estimation of the number of classes in a population. Scand J Stat 11:265–270

    Google Scholar 

  10. Cherubin RA (2003) Efeitos da viabilidade da levedura e da contaminação bacteriana na fermentação alcoólica. Universidade de São Paulo

  11. Daniel JS, Dowe N, Ibsen KN, Riley CJ, Ruth MF, Lumpkin RE (2007) Contaminant occurrence, identification and control in a pilot-scale corn fiber to ethanol conversion process. Bioresour Technol 98:2942–2948. https://doi.org/10.1016/j.biortech.2006.10.002

    Article  CAS  Google Scholar 

  12. De Filippis F, Parente E, Ercolini D (2017) Metagenomics insights into food fermentations. Microb Biotechnol 10:91–102. https://doi.org/10.1111/1751-7915.12421

    Article  PubMed  Google Scholar 

  13. Devantier R, Pedersen S, Olsson L (2005) Characterization of very high gravity ethanol fermentation of corn mash. Effect of glucoamylase dosage, pre-saccharification and yeast strain. Appl Microbiol Biotechnol 68:622–629. https://doi.org/10.1007/s00253-005-1902-9

    Article  PubMed  CAS  Google Scholar 

  14. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. https://doi.org/10.1093/bioinformatics/btr381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Flugge MJ, Lewandrowski J, Rosenfeld J, Boland C, Hendrickson T, Jaglo K, Kolansky S, Moffroid K, Riley-Gilbert M, Pape D (2017) A life-cycle analysis of the greenhouse gas emissions of corn-based ethanol. Report prepared by ICF under USDA Contract No. AG-34142-D-16-0243

  16. Gibson BR, Lawrence SJ, Leclaire JPR, Powell CD, Smart KA (2007) Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol Rev 31:535–569. https://doi.org/10.1111/j.1574-6976.2007.00076.x

    Article  PubMed  CAS  Google Scholar 

  17. Hamady M, Knight R (2009) Microbial community profiling for human microbiome projects: Tools, techniques, and challenges. Genome Res 19:1141–1152. https://doi.org/10.1101/gr.085464.108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Illumina (2017) bcl2fastq2 Conversion v2.19. In: Illumina, User Guid. 15051736, v2. https://usermanual.wiki/Document/bcl2fastq2guide15051736v2.164202932/view. Accessed 10 Feb 2019

  19. Illumina I (2017) Calculating percent passing filter for patterned and nonpatterned flow cells. In: Illumina, Tech. Note Informatics. chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/https://www.illumina.com/content/dam/illumina-marketing/documents/products/technotes/hiseq-x-percent-pf-technical-note-770-2014-043.pdf. Accessed 10 Feb 2019

  20. Illumina (2018) HiSeq X System Guide. In: Illumina, Hiseq x Syst. Guid. (15050091), v07. http://www.illumina.com/systems/hiseq-x-sequencing-system/performance-specifications.html. Accessed 10 Feb 2019

  21. Kchouk M, Gibrat JF, Elloumi M (2017) Generations of sequencing technologies: From first to next generation. Biol Med 09:8. https://doi.org/10.4172/0974-8369.1000395

    Article  CAS  Google Scholar 

  22. Khatibi PA, Roach DR, Donovan DM, Hughes SR, Bischoff KM (2014) Saccharomyces cerevisiae expressing bacteriophage endolysins reduce Lactobacillus contamination during fermentation. Biotechnol Biofuels 7:1–13. https://doi.org/10.1186/1754-6834-7-104

    Article  CAS  Google Scholar 

  23. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform. Appl Environ Microbiol 79:5112–5120. https://doi.org/10.1128/AEM.01043-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Kultima JR, Coelho LP, Forslund K, Huerta-Cepas J, Li SS, Driessen M, Voigt AY, Zeller G, Sunagawa S, Bork P (2016) MOCAT2: a metagenomic assembly, annotation and profiling framework. Bioinformatics 32:2520–2523. https://doi.org/10.1093/bioinformatics/btw183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Leathers TD, Bischoff KM, Rich JO, Price NPJ, Manitchotpisit P, Nunnally MS, Anderson AM (2014) Inhibitors of biofilm formation by biofuel fermentation contaminants. Bioresour Technol 169:45–51. https://doi.org/10.1016/j.biortech.2014.06.065

    Article  PubMed  CAS  Google Scholar 

  26. Leite IR, Faria JR, Marquez LDS, Reis MHM, De Resende MM, Ribeiro EJ, Cardoso VL (2013) Evaluation of hop extract as a natural antibacterial agent in contaminated fuel ethanol fermentations. Fuel Process Technol 106:611–618. https://doi.org/10.1016/j.fuproc.2012.09.050

    Article  CAS  Google Scholar 

  27. Li Q, Heist EP, Moe LA (2016) Bacterial community structure and dynamics during corn-based bioethanol fermentation. Microb Ecol 71:409–421. https://doi.org/10.1007/s00248-015-0673-9

    Article  PubMed  CAS  Google Scholar 

  28. Lucena BTL, dos Santos BM, Moreira JL, Moreira APB, Nunes AC, Azevedo V, Miyoshi A, Thompson FL, de Morais M (2010) Diversity of lactic acid bacteria of the bioethanol process. BMC Microbiol. https://doi.org/10.1186/1471-2180-10-298

    Article  PubMed  PubMed Central  Google Scholar 

  29. Montel MC, Buchin S, Mallet A, Delbes-Paus C, Vuitton DA, Desmasures N, Berthier F (2014) Traditional cheeses: rich and diverse microbiota with associated benefits. Int J Food Microbiol 177:136–154. https://doi.org/10.1016/j.ijfoodmicro.2014.02.019

    Article  PubMed  Google Scholar 

  30. Morris EK, Caruso T, Buscot F, Fischer M, Hancock C, Maier TS, Meiners T, Müller C, Obermaier E, Prati D, Socher SA, Sonnemann I, Wäschke N, Wubet T, Wurst S, Rillig MC (2014) Choosing and using diversity indices: Insights for ecological applications from the German biodiversity exploratories. Ecol Evol 4:3514–3524. https://doi.org/10.1002/ece3.1155

    Article  PubMed  PubMed Central  Google Scholar 

  31. Murphree CA, Heist EP, Moe LA (2014) Antibiotic resistance among cultured bacterial isolates from bioethanol fermentation facilities across the United States. Curr Microbiol 69:277–285. https://doi.org/10.1007/s00284-014-0583-y

    Article  PubMed  CAS  Google Scholar 

  32. Narendranath NV, Thomas KC, Ingledew WM (2001) Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium. J Ind Microbiol Biotechnol 26:171–177. https://doi.org/10.1038/sj.jim.7000090

    Article  PubMed  CAS  Google Scholar 

  33. Neto PDO, De Lima FA, Da Silva KC, Da Silva DF, Carvalho AFA, Dos Santos C (2014) Chemical inhibition of the contaminant Lactobacillus fermentum from distilleries producing fuel bioethanol. Braz Arch Biol Technol 57:441–447. https://doi.org/10.1590/S1516-8913201401214

    Article  CAS  Google Scholar 

  34. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA (2017) metaSPAdes: a new versatile metagenomic assembler. Genome Res 27:824–834. http://www.genome.org/cgi/doi/10.1101/gr.213959.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2018) Vegan: Community ecology package. https://cran.r-project.org/. Accessed 10 Feb 2019

  36. Olivier JGJ, Peters JAHW (2017) Trends in global CO2 and total greenhouses gas emissions. https://www.pbl.nl/en/publications/trends-in-global-co2-and-total-greenhouse-gas-emissions-2018-report. Accessed 10 Feb 2019

  37. Pandya S, Ravi K, Srinivas V, Jadhav S, Khan A, Arun A, Riley LW, Madhivanan P (2017) Comparison of culture-dependent and culture-independent molecular methods for characterization of vaginal microflora. J Med Microbiol 66:149–153. https://doi.org/10.1099/jmm.0.000407

    Article  PubMed  PubMed Central  Google Scholar 

  38. Paulus Compart DM, Carlson AM, Crawford GI, Fink RC, Diez-Gonzalez F, Dicostanzo A, Shurson GC (2013) Presence and biological activity of antibiotics used in fuel ethanol and corn co-product production. J Anim Sci 91:2395–2404. https://doi.org/10.2527/jas.2012-5714

    Article  Google Scholar 

  39. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res 41:590–596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  Google Scholar 

  40. R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 10 Feb 2019

  41. Rich JO, Leathers TD, Bischoff KM, Anderson AM, Nunnally MS (2015) Biofilm formation and ethanol inhibition by bacterial contaminants of biofuel fermentation. Bioresour Technol 196:347–354. https://doi.org/10.1016/j.biortech.2015.07.071

    Article  PubMed  CAS  Google Scholar 

  42. Rückle L, Senn T (2006) Hop acids can efficiently replace antibiotics in ethanol production. Int Sugar J 108:139–147

    Google Scholar 

  43. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. https://doi.org/10.1128/AEM.01541-09

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Takai K, Koki H (2000) Rapid detection and quantification of members of the archael community by quantitative PCR using fluorogenic probes. Appl Environ Microbiol 66:5066–5072. https://doi.org/10.1128/AEM.66.11.5066-5072.2000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Thomas KC, Hynes SH, Ingledew WM (2001) Effect of lactobacilli on yeast growth, viability and batch and semi-continuous alcoholic fermentation of corn mash. Appl Microbiol 90:819–828. https://doi.org/10.1007/s10295-004-0159-0

    Article  CAS  Google Scholar 

  46. Tran B, Brown AMK, Bedard PL, Winquist E, Goss GD, Hotte SJ, Welch SA, Hirte HW, Zhang T, Stein LD, Ferretti V, Watt S, Jiao W, Ng K, Ghai S, Shaw P, Petrocelli T, Hudson TJ, Neel BG, Onetto N, Siu LL, McPherson JD, Kamel-Reid S, Dancey JE (2013) Feasibility of real time next generation sequencing of cancer genes linked to drug response: results from a clinical trial. Int J Cancer 132:1547–1555. https://doi.org/10.1002/ijc.27817

    Article  PubMed  CAS  Google Scholar 

  47. Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E, Tett A, Huttenhower C, Segata N (2015) MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods 12:902–903. https://doi.org/10.1002/ijc.27817

    Article  PubMed  CAS  Google Scholar 

  48. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer KH, Whitman WB, Euzéby J, Amann R, Rosselló-Móra R (2014) Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 12:635–645. https://doi.org/10.1038/nrmicro3330

    Article  PubMed  CAS  Google Scholar 

  49. Zheng J, Ruan L, Sun M, Gänzle M (2015) A genomic view of lactobacilli and pediococci demonstrates that phylogeny matches ecology and physiology. Appl Environ Microbiol 81:7233–7243. https://doi.org/10.1128/AEM.02116-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Zheng J, Zhao X, Lin XB, Gänzle M (2015) Comparative genomics Lactobacillus reuteri from sourdough reveals adaptation of an intestinal symbiont to food fermentations. Sci Rep 5:18234. https://doi.org/10.1038/srep18234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from Wisconsin Alumni Research Foundation (WARF) and by Lallemand Inc. We acknowledge the ethanol biorefineries for providing samples, Professor Garret Suen and his team for helping with data analysis, and the analytical team from Mascoma, LLC for all their support during this project. Fernanda Firmino gratefully acknowledges the scholarship from CAPES (Brazil) to pursue her postgraduate studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James L. Steele.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2195 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Firmino, F.C., Porcellato, D., Cox, M. et al. Characterization of microbial communities in ethanol biorefineries. J Ind Microbiol Biotechnol 47, 183–195 (2020). https://doi.org/10.1007/s10295-019-02254-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-019-02254-7

Keywords

Navigation