Skip to main content
Log in

Physicochemical Characteristics of a Variant of Chaperon GroEL Apical Domain Designed to Enhance the Expression and Stability of Target Proteins

  • PRODUCERS, BIOLOGY, SELECTION, AND GENE ENGINEERING
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

This work describes the properties of a new protein, a modification of GroEL apical domain designed to be a leader in fusion systems. This polypeptide leader demonstrates a high level of expression in a bacterial system; it is soluble and retains its solubility during standard biochemical manipulations. The secondary structure of the protein and its thermostability, as well as the protein solubility, were studied in a wide temperature range. To simplify the subsequent purification of the target protein, the possibility of its chemical cleavage from the fused protein by methionine residues with cyanogen bromide is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Sharapova, O.A., Pozdnykova, N.V., Laurinavichyute, D.K., et al., High-efficient expression, refolding and purification of functional recombinant C-terminal fragment of human alpha-fetoprotein, Protein Expression Purif., 2010, vol. 73, no. 1, pp. 31–35. https://doi.org/10.1016/j.pep.2010.03.025

    Article  CAS  Google Scholar 

  2. Sharapova, O.A., Yurkova, M.S., Laurinavichyute, D.K., et al., Efficient refolding of a hydrophobic protein with multiple S– bonds by on-resin immobilized metal affinity chromatography, J. Chromatogr., 2011, vol. 1218, no. 31, pp. 5115–5119. https://doi.org/10.1016/j.chroma.2011.05.075

    Article  CAS  Google Scholar 

  3. Fedorov, A.N. and Yurkova, M.S., Molecular Chaperone GroEL—toward a nano toolkit in protein engineering, production and pharmacy, NanoWorld J., 2018, vol. 4, pp. 8–15. https://doi.org/10.17756/nwj.2018-053

    Article  CAS  Google Scholar 

  4. de Marco, A., Molecular and chemical chaperones for improving the yields of soluble recombinant proteins, Methods Mol. Biol. (Clifton, N.J.), 2011, vol. 705, pp. 31–51. https://doi.org/10.1007/978-1-61737-967-3_3

    Article  CAS  Google Scholar 

  5. Kapust, R.B. and Waugh, D.S., Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused, Protein Sci. (Publ. Protein Soc.), 1999, vol. 8, no. 8, pp. 1668–1674. https://doi.org/10.1110/ps.8.8.1668

    Article  CAS  Google Scholar 

  6. Riggs, P., La Vallie, E.R., and McCoy, J.M., Current Protocols in Molecular Biology, Frederick, M.A., et al., Ed., Hoboken, USA: Wiley, 2001, ch. 16, unit16.4A 16.4.1–16.4.4. https://doi.org/10.1002/0471142727.mb1604as28

  7. Terpe, K., Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems, Appl. Microbiol. Biotechnol., 2003, vol. 60, no. 5, pp. 523–533. https://doi.org/10.1007/s00253-002-1158-6

    Article  CAS  PubMed  Google Scholar 

  8. Bell, M.R., Engleka, M.J., Malik, A., and Strickler, J.E., To fuse or not to fuse: what is your purpose?, Protein Sci. (Publ. Protein Soc.), 2013, vol. 22, no. 11, pp. 1466–1477. https://doi.org/10.1002/pro.2356

    Article  CAS  Google Scholar 

  9. Del Proposto, J., Majmudar, C.Y., Smith, J.L., and Brown, W.C., Mocr: A novel fusion tag for enhancing solubility that is compatible with structural biology applications, Protein Expression Purif., 2009, vol. 63, no. 1, pp. 40–49. https://doi.org/10.1016/j.pep.2008.08.011

    Article  CAS  Google Scholar 

  10. Zahn, R., Buckle, A.M., Perrett, S., et al., Chaperone activity and structure of monomeric polypeptide binding domains of GroEL, Proc. Natl. Acad. Sci., 1996, vol. 93, no. 26, pp. 15024–15029. PMID: 8986757

    Article  CAS  Google Scholar 

  11. Buckle, A.M., Zahn, R., and Fersht, A.R., A structural model for GroEL-polypeptide recognition, Proc. Natl. Acad. Sci. U. S. A., 1997, vol. 94, no. 8, pp. 3571–3575. https://doi.org/10.1073/pnas.94.8.3571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chatellier, J., Hill, F., Lund, P.A., and Fersht, A.R., In vivo activities of GroEL minichaperones, Proc. Natl. Acad. Sci. U. S. A., 1998, vol. 95, no. 17, pp. 9861–9866. PMID: 9707566

    Article  CAS  Google Scholar 

  13. Golbik, R., Zahn, R., Harding, S.E., and Fersht, A.R., Thermodynamic stability and folding of GroEL minichaperones, J. Mol. Biol., 1998, vol. 276, no. 2, pp. 505–515. https://doi.org/10.1006/jmbi.1997.1538

    Article  CAS  PubMed  Google Scholar 

  14. Tanaka, N. and Fersht, A.R., Identification of substrate binding site of GroEL minichaperone in solution, J. Mol. Biol., 1999, vol. 292, no. 1, pp. 173–180. https://doi.org/10.1006/jmbi.1999.3041

    Article  CAS  PubMed  Google Scholar 

  15. Chen, J., Yagi, H., Sormanni, P., et al., Fibrillogenic propensity of the GroEL apical domain: a Janus-faced minichaperone, FEBS Lett., 2012, vol. 586, no. 8, pp. 1120–1127. https://doi.org/10.1016/j.febslet.2012.03.019

    Article  CAS  PubMed  Google Scholar 

  16. Hua, Q., Dementieva, I.S., Walsh, M.A., et al., A thermophilic mini-chaperonin contains a conserved polypeptide-binding surface: combined crystallographic and NMR studies of the GroEL apical domain with implications for substrate interactions, J. Mol. Biol., 2001, vol. 306, no. 3, pp. 513–525. https://doi.org/10.1006/jmbi.2000.4405

    Article  CAS  PubMed  Google Scholar 

  17. Wang, Q., Buckle, A.M., and Fersht, A.R., Stabilization of GroEL minichaperones by core and surface mutations, J. Mol. Biol., 2000, vol. 298, no. 5, pp. 917–926. https://doi.org/10.1006/jmbi.2000.3716

    Article  CAS  PubMed  Google Scholar 

  18. Schagger, H. and von Jagow, G., Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa, Anal. Biochem., 1987, vol. 166, no. 2, pp. 368–379. PMID: 2449095

    Article  CAS  Google Scholar 

  19. Sharapova, O.A., Yurkova, M.S., and Fedorov, A.N., A minichaperone-based fusion system for producing insoluble proteins in soluble stable forms, Protein Eng., Des. Sel., 2016, vol. 29, no. 2, pp. 57–64. https://doi.org/10.1093/protein/gzv060

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation, project no. RFMEFI57517X0151.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Fedorov.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by I. Gordon

Abbreviations: AEBSF, 4-(2-aminoethyl)benzenesulfonyl fluoride; IPTG, isopropyl-β-D-thiogalactopyranoside; LB medium, lysogenic broth medium; PAGE, polyacrylamide gel electrophoresis; PBS, phosphate-buffered saline.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurov, K.A., Savvin, O.I., Yurkova, M.S. et al. Physicochemical Characteristics of a Variant of Chaperon GroEL Apical Domain Designed to Enhance the Expression and Stability of Target Proteins. Appl Biochem Microbiol 55, 765–770 (2019). https://doi.org/10.1134/S0003683819080088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683819080088

Keywords:

Navigation