Skip to main content
Log in

Stretchable strain sensors based on polyaniline/thermoplastic polyurethane blends

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Thermoplastic polyurethane/polyaniline-based stretchable strain sensors were prepared via in situ polymerization of aniline in the TPU solution in the form of thin films. The sensors where characterized for morphological and thermal properties, mechanical hysteresis and cyclic piezoelectric performance. Thermogravimetric analysis showed blends to be thermally stable up to 230 °C. Electrical conductivity increased up to 30 wt% of Ani.DBSA loading after which a decline was observed due to reduced conversion of aniline monomer to polyaniline. Piezo-resistive measurements also showed a decrease in electrical conductivity upon stretching due to disconnection mechanism between Ani.DBSA particles. The cyclic piezo-resistive properties were evaluated at a strain of 10%. The sensors showed a gauge factor of 2.59. The dispersion and distribution was uniform at all levels of Ani.DBSA loading as visualized by SEM analysis. Beside uniform dispersion, SEM analysis also revealed polyaniline chains connecting with the polyurethane matrix which increases its conductivity. Hence, the proposed sensors can be employed as flexible strain sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Amjadi M, Kyung K-U, Park I, Sitti M (2016) Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv Funct Mater 26:1678–1698

    Article  CAS  Google Scholar 

  2. Herbert R, Kim J-H, Kim YS, Lee H, Yeo W-H (2018) Soft material-enabled, flexible hybrid electronics for medicine, healthcare, and human–machine interfaces. Materials 11:187

    Article  Google Scholar 

  3. Yana Y, Pottsa M, Jianga Z, Sencadas V (2018) Synthesis of highly-stretchable graphene—poly(glycerol sebacate) elastomeric nanocomposites piezoresistive sensors for human motion detection applications. Compos Sci Technol 162:14–22

    Article  Google Scholar 

  4. Lee J, Kim S, Lee J, Yang D, Park BC, Ryu S, Park I (2014) A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection. Nanoscale 6:11932–11939

    Article  CAS  Google Scholar 

  5. Wang X, Meng S, Tebyetekerwa M, Li Y, Pionteck J, Sun B, Qin Z, Zhu M (2018) Highly sensitive and stretchable piezoresistive strain sensor based on conductive poly(styrene-butadiene-styrene)/few layer graphene composite fiber. Compos Part A 105:291–299

    Article  CAS  Google Scholar 

  6. Kong J-H, Jang N-S, Kim S-H, Kim J-M (2014) Simple and rapid micropatterning of conductive carbon composites and its application to elastic strain sensors. Carbon 77:199–207

    Article  CAS  Google Scholar 

  7. Giffney T, Bejanin E, Kurian AS, Travas-Sejdic J, Aw K (2017) Highly stretchable printed strain sensors using multi-walled carbonnanotube/silicone rubber composites. Sens Actuators, A 259:44–49

    Article  CAS  Google Scholar 

  8. Niu D, Jiang W, Ye G, Wang K, Yin L, Shi Y, Chen B, Luo F, Liua H (2018) Graphene-elastomer nanocomposites based flexible piezoresistive sensors for strain and pressure detection. Mater Res Bull 102:92–99

    Article  CAS  Google Scholar 

  9. Tang Y, Zhao Z, Hu H, Liu Y, Wang X, Zhou S, Qiu J (2015) Highly stretchable and ultrasensitive strain sensor based on reduced graphene oxide microtubes−elastomer composite. ACS Appl Mater Interfaces 7:27432–27439

    Article  CAS  Google Scholar 

  10. Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I (2014) Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 8(5):5154–5163

    Article  CAS  Google Scholar 

  11. Jeevananda T (2008) Synthesis and characterization of polyaniline filled PU/PMMA interpenetrating polymer networks. Eur Polym J 39(3):569–578

    Article  Google Scholar 

  12. Rodrigues PC, Akcelrud L (2003) Networks and blends of polyaniline and polyurethane: correlations between composition and thermal, dynamic mechanical and electrical properties. Polymer 44(22):6891–6899

    Article  CAS  Google Scholar 

  13. Wang Y, Hsu Y, Wu R, Kao H (2003) Synthesis and structure properties of polyurethane based conducting copolymer, 13C NMR analysis. Synth Met 132:151–160

    Article  CAS  Google Scholar 

  14. Yong KC, Foot PJS, Morgan H, Cook S, Tinker AJ (2006) Conductive poly(butadiene-co-acrylonitrile)-polyaniline dodecylbenzenesulfonate [NBR-PANI.DBSA] blends prepared in solution. Eur Polym J 42(8):1716–1727

    Article  CAS  Google Scholar 

  15. Yoshikawa H, Hino T, Kuramoto N (2006) Effect of temperature and moisture on electrical conductivity in polyaniline/polyurethane (PANI/PU) blends. Synth Met 156:1187–1193

    Article  CAS  Google Scholar 

  16. Liang C, Leroy G, Gest J, Vandamme LKJ, Wojkiewicz JL (2009) 1/f noise in polyaniline/polyurethane (PANI/PU) blends. Synth Met 159:1–6

    Article  CAS  Google Scholar 

  17. Gong XX, Fei GT, Fu WB, Fang M, Gao XD, Zhong BN, Zhang LD (2017) Flexible strain sensor with high performance based on PANI/PDMS films. Org Electron 47:51–56

    Article  CAS  Google Scholar 

  18. Gong S, Lai DTH, Wang Y, Yap LW, Si KJ, Shi Q, Jason NN, Sridhar T, Uddin H, Cheng W (2015) Tattoolike polyaniline microparticle-doped gold nanowire patches as highly durable wearable sensors. ACS Appl Mater Interfaces 7(35):19700–19708

    Article  CAS  Google Scholar 

  19. Levin ZS, Robert C, Feller JF, Castro M, Grunlan JC (2013) Flexible latex—polyaniline segregated network composite coating capable of measuring large strain on epoxy. Smart Mater Struct 22:1–9

    Article  Google Scholar 

  20. Wang X, SunH Yue X, Yu Y, Zheng G, Dai K, Liu C, Shen C (2018) A highly stretchable carbon nanotubes/thermoplastic polyurethane fiber-shaped strain sensor with porous structure for human motion monitoring. Compos Sci Technol 168:126–132

    Article  CAS  Google Scholar 

  21. Zhang R, Deng H, Valenca R, Jin J, Fu Q, Bilotti E, Peijs T (2013) Strain sensing behaviour of elastomeric composite films containing carbon nanotubes under cyclic loading. Compos Sci Technol 74:1–5

    Article  CAS  Google Scholar 

  22. Zhang R, Baxendale M, Peijs T (2007) Universal resistivity–strain dependence of carbon nanotube/polymer composite. Phys Rev B 76:195433

    Article  Google Scholar 

  23. Liu H, Dong M, Huang W, Gao J, Dai K, Guo J, Zheng G, Liu C, Shen C, Guo Z (2017) Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing. J Mater Chem C 5:73–83

    Article  CAS  Google Scholar 

  24. Ke K, Bonab VS, Yuan D, Manas-Zloczower I (2018) Piezoresistive thermoplastic polyurethane nanocomposites with carbon nanostructures. Carbon 139:52–58

    Article  CAS  Google Scholar 

  25. Vicentini DS, Barra GMO, Bertolino JR, Pires ANT (2007) Polyaniline/thermoplastic polyurethane blends: preparation and evaluation of electrical conductivity. Eur Polym J 43:4565–4572

    Article  CAS  Google Scholar 

  26. Silva MJ, Sanches AO, Malmonge LF, Malmonge JA (2014) Electrical, mechanical, and thermal analysis of natural rubber/polyaniline-Dbsa composite. Mater Res 17:59–63

    Article  Google Scholar 

  27. Cardoso MJR, Lima MFS, Lenz DM (2007) Polyaniline synthesized with functionalized sulfonic acids for blends manufacture. Mater Res 10:425–429

    Article  CAS  Google Scholar 

  28. Seyedin MZ, Razal JM, Innis PC, Wallace GG (2014) Strain-responsive polyurethane/ PEDOT: PSS elastomeric composite fibers with high electrical conductivity. Adv Funct Mater 24(20):2957–2966

    Article  CAS  Google Scholar 

  29. Fan Q, Zhang X, Qin Z (2011) Preparation of polyaniline/polyurethane fibers and their piezoresistive property. J Macromol Sci Part B Phys 51:736–746

    Article  Google Scholar 

  30. Naseem S, Irfan MS, Saeed F, Manzoor MB, Qaiser AA, Shehzad MA (2016) Effect of dopant type on the properties of polyaniline filled PU/ PMMA conducting interpenetrating polymer networks. Progr Rubber Plast Recycl Technol 32:3

    Google Scholar 

  31. Sanli A, Benchirouf A, Müller C, Kanoun O (2017) Piezoresistive performance characterization of strain sensitive multi-walled carbon nanotube-epoxy nanocomposites. Sens Actuators, A 254:61–68

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Shafiq Irfan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashid, I.A., Irfan, M.S., Gill, Y.Q. et al. Stretchable strain sensors based on polyaniline/thermoplastic polyurethane blends. Polym. Bull. 77, 1081–1093 (2020). https://doi.org/10.1007/s00289-019-02796-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02796-x

Keywords

Navigation