Skip to main content

Advertisement

Log in

Synthesis and Characterization of Copper(I)‐Cysteine Complex Supported on Magnetic Layered Double Hydroxide as an Efficient and Recyclable Catalyst System for Click Chemistry Using Choline Azide as Reagent and Reaction Medium

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this study, Fe3O4@LDH@cysteine–Cu(I) nanoparticles as a novel and recyclable catalytic system was designed and successfully synthesized. These nanoparticles show high catalytic activity for preparation of the triazole family through reaction of the organic halides with alkynes in the presence of choline azide as reagent and reaction medium. In addition, Fe3O4@LDH@cysteine–Cu(I) could be easily recovered and reused for five times without any significant loss in catalytic activity.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Scheme 3
Fig. 7

Similar content being viewed by others

References

  1. Kolb HC, Finn MG, Sharpless KB (2001) Angew Chem 40:2004

    Article  CAS  Google Scholar 

  2. Alonso F, Moglie Y, Radivoy G (2015) Acc Chem Res 48:2516

    Article  CAS  Google Scholar 

  3. Stockmann H, Neves AA, Day HA, Stairs Sh, Brindle KM, Leeper FJ (2011) Chem Commun 47:7203

    Article  Google Scholar 

  4. Huisge R (1961) Proc Chem Soc 0:357

  5. Lal K, Yadav P (2018) Anti-Cancer Agents Med Chem 18:21

    Article  CAS  Google Scholar 

  6. Buckle DR, Rockell CJM, Smith H, Spicer BA (1986) J Med Chem 29:2262

    Article  CAS  Google Scholar 

  7. Kharb R, Yar MS, Sharma PC (2011) Curr Med Chem 18:3265

    Article  CAS  Google Scholar 

  8. Deswal S, Tittal RK, Yadav P, Lal K, Gh Vikas D, Kumar N (2019) ChemistrySelect 4:759

    Article  CAS  Google Scholar 

  9. Sabarinathan N, Sridharan S, Antony SA (2015) Int J Chem Tech Res 7:2573

    CAS  Google Scholar 

  10. Tian Y, Liu Z, Liu J, Huang B, Kang D, Zhang H, Clercq ED, Daelemans D, Pannecouque Ch, Lee KH, Chen ChH, Zhan P, Liu X (2018) Eur J Med Chem 151:339

    Article  CAS  Google Scholar 

  11. Lal K, Yadav P, Kumar A, Kumar A, Kumar Paul A (2018) Bioorg Chem 77:236

    Article  CAS  Google Scholar 

  12. Masuyama Y, Yoshikawa K, Suzuki N, Hara K, Fukuoka A (2011) Tetrahedron Lett 52:6916

    Article  CAS  Google Scholar 

  13. Gholinejad M, Jeddi N (2014) ACS Sustain Chem Eng 12:2658

    Article  Google Scholar 

  14. Alonso F, Moglie Y, Radivoy G, Yus M (2013) J Org Chem 78:5031

    Article  CAS  Google Scholar 

  15. Rajabzadeh M, Khalifeh R, Eshghi H, Sorouri M (2019) Catal Lett 149:1125

    Article  CAS  Google Scholar 

  16. Chassaing S, Sani Souna Sido A, Alix A, Kumarraja M, Pale P, Sommer J (2008) Chem Eur J 14(22):6713–6721

    Article  CAS  Google Scholar 

  17. Moghaddam FM, Ayati SE (2015) RSC Adv 5:3894

    Article  CAS  Google Scholar 

  18. Bräse S, Mende M, Jobelius HH, Scharf HD (2000) Hydrazoic acid and azides. (Ullmann’s Encyclopedia of Industrial Chemistry). Wiley-VCH, Weinheim

    Google Scholar 

  19. Mehraban JA, Azizi K, Jalali MS, Heydari A (2018) ChemistrySelect 3:116

    Article  CAS  Google Scholar 

  20. Tavassoli M, Landarani-Isfahani A, Moghadam M, Tangestaninejad S, Mirkhani V, Mohammadpoor BI (2016) ACS Sustain Chem Eng 4:1454

    Article  CAS  Google Scholar 

  21. Lal K, Rani P (2016) ARKIVOC I:307

  22. Tavassoli M, Landarani-Isfahani A, Moghadam M, Tangestaninejad S, Mirkhani V, Mohammadpoor BI (2015) Appl Catal A 503:186

    Article  CAS  Google Scholar 

  23. Sarkar SM, Rahman ML (2017) J Clean Prod 141:667

    Article  Google Scholar 

  24. Liu X, Novoa N, Manzur C, Carrillo D, Hamon JR (2016) N J Chem 40:3308

    Article  CAS  Google Scholar 

  25. Choy JH, Kwak SY, Park JS, Jeong YJ (2001) J Mater Chem 11:1671

    Article  CAS  Google Scholar 

  26. Kwak SY, Kriven WM, Wallig MA, Choy JH (2004) Biomaterials 25:5995

    Article  CAS  Google Scholar 

  27. Zhang Y, Kohler N, Zhang M (2002) Biomaterials 23:1553

    Article  CAS  Google Scholar 

  28. Zhang H, Zou K, Sun H, Duan X (2005) J Solid State Chem 178:3485

    Article  CAS  Google Scholar 

  29. Chakraborti M, Jackson JK, Plackett D, Brunette DM, Burt HM (2011) Int J Pharm 416:305

    CAS  PubMed  Google Scholar 

  30. Ghiasi Moaser A, Khoshnavazi R (2017) New J Chem 41:9472

    Article  CAS  Google Scholar 

  31. Salamatmanesh A, Kazemi Miraki M, Yazdani E, Heydari A (2018) Catal Lett 148:3257

    Article  CAS  Google Scholar 

  32. Wei Y, Han B, Hu X, Lin Y, Wang X, Deng X (2012) Proc Eng 27:632

    Article  CAS  Google Scholar 

  33. Popovic K, Miljevic N, Zec S (1991) Ceram Int 17(1):49–52

    Article  Google Scholar 

  34. Reinholdt MX, Kirkpatrick RJ (2006) Chem Mater 18:2567

    Article  CAS  Google Scholar 

  35. Otvos SB, Georgiades A, Adok-Sipiczki M, Meszaros R, Palinko I, Sipos P, Fulop F (2015) Appl Catal A 501:63

    Article  CAS  Google Scholar 

  36. Huang L, Liu W, Wu J, Fu Y, Wang K, Huo C et al (2014) Nanocopper catalyzed three-component reaction to construct 1,4-substituted 1,2,3-triazoles. Tetrahedron Lett 55(14):2312

    Article  CAS  Google Scholar 

  37. Kumari M, Jain Y, Yadav P, Laddha H, Gupta R (2019) Synthesis of Fe3 O4-DOPA-Cu magnetically separable nanocatalyst: a versatile and robust catalyst for an array of sustainable multicomponent reactions under microwave irradiation. Catal Lett 149(8):2180–2194

    Article  CAS  Google Scholar 

  38. Jia Z, Wang K, Li T, Tan B, Gu Y (2016) Functionalized hypercrosslinked polymers with knitted N-heterocyclic carbene–copper complexes as efficient and recyclable catalysts for organic transformations. Catal Sci Technol 6(12):4345–4355

    Article  CAS  Google Scholar 

  39. Mishra A, Rai P, Srivastava M, Tripathi BP, Yadav S, Singh J, Singh J (2017) A peerless aproach: organophotoredox/Cu(I) catalyzed, regioselective, visible light facilitated, click synthesis of 1,2,3-Triazoles via Azide–Alkyne [3 + 2] Cycloaddition. Catal Lett 147(10):2600–2611

    Article  CAS  Google Scholar 

  40. Pourjavadi A, Motamedi A, Hosseini SH, Nazari M (2016) Magnetic starch nanocomposite as a green heterogeneous support for immobilization of large amounts of copper ions: heterogeneous catalyst for click synthesis of 1,2,3-triazoles. RSC Adv 6(23):19128

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support rendered by the University of Tarbiat Modares is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akbar Heydari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2714 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pazoki, F., Salamatmanesh, A., Bagheri, S. et al. Synthesis and Characterization of Copper(I)‐Cysteine Complex Supported on Magnetic Layered Double Hydroxide as an Efficient and Recyclable Catalyst System for Click Chemistry Using Choline Azide as Reagent and Reaction Medium. Catal Lett 150, 1186–1195 (2020). https://doi.org/10.1007/s10562-019-03011-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-03011-2

Keywords

Navigation