Skip to main content
Log in

Micro-structural Evolution and Optical Performance of TiO2 Nano-particles and CdS–TiO2 Nano-composite Materials

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In the present work, we elaborated the CdS–TiO2 (CSTO) composite materials and considered their micro-structural and optical properties were investigated. The micro-structure and optical properties were examined by TEM, XRD, absorption and PL. The particles dimensions of composite have been varied from 18 to 22 nm while the typical crystalline size of TiO2 sample materials was varied involving the 9 nm and 14 nm. The direct band-gap of TiO2 nano-particles is 3.33 eV and Eg of CSTO sample is enlarged to 3.31 eV. The TEM show the existence of the CdS could efficiently hibit the agglomeration of the CSTO and progress the dispersion of particles. The photo-luminescence (PL) spectra illustrate that the CSTO sample has two tough emissions. These clarification results from the creation of the CSTO bond and the existence of CdS roughly anatase, which would impede the development of TiO2 powder. The internal micro-structure, thus obtained will make the permanence of our composite sample, allowing a development of optical features of TiO2 composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Tian, Y.H. Leng, H.Z. Cui, H. Liu, J. Hazard. Mater. 299, 165 (2015)

    Article  CAS  Google Scholar 

  2. A. Kaur, A. Umar, W.A. Anderson, S.K. Kansal, J. Photochem. Photobiol. A 360, 34 (2018)

    Article  CAS  Google Scholar 

  3. M. Krbal, J. Prikryl, R. Zazpe, H. Sopha, J.M. Macak, Nanoscale 9, 7755 (2017)

    Article  CAS  Google Scholar 

  4. W.T. Li, C.L. Shang, X. Li, Appl. Surf. Sci. 357, 2223 (2015)

    Article  CAS  Google Scholar 

  5. B. Huang, Y. Yang, X. Chen, D. Ye, Catal. Commun. 11, 844 (2010)

    Article  CAS  Google Scholar 

  6. Y.-H. Yu, Y.-P. Chen, Z. Cheng, Int. J. Hydrog. Energy 40, 15994 (2015)

    Article  CAS  Google Scholar 

  7. L. Tang, Y.C. Deng, G.M. Zeng, W. Hu, J.J. Wang, Y.Y. Zhou, J.J. Wang, J. Tang, W. Fang, J. Alloys Comp. 662, 516 (2016)

    Article  CAS  Google Scholar 

  8. J.J. Tao, M.L. Hong, M. Zhang, X.S. Chen, Z. Sun, J. Mater. Sci.: Mater. Electron. 27, 2103 (2015)

    Google Scholar 

  9. G.D. Yang, B.L. Yang, T.C. Xiao, Z.F. Yan, Appl. Surf. Sci. 283, 402 (2013)

    Article  CAS  Google Scholar 

  10. X. Li, T. Xia, X. Changhui, J. Murowchick, X. Chen, Catal. Today 225, 64 (2014)

    Article  CAS  Google Scholar 

  11. D.S. Wang, J. Zhang, Q.Z. Luo, X.Y. Li, Y.D. Duan, J. An, J. Hazard. Mater. 169, 546 (2009)

    Article  CAS  Google Scholar 

  12. M.M. Rashad, E.M. Elsayed, M.S. Al-Kotb, A.E. Shalan, J. Alloys Compd. 581, 71 (2013)

    Article  CAS  Google Scholar 

  13. H. Cai, X. Yang, W. Zhang, H. Li, Y. Qiu, N. Xu, J. Wu, J. Sun, Sol. Energy Mater. Sol. Cells 162, 47 (2017)

    Article  CAS  Google Scholar 

  14. A. Maurya, P. Chauhan, Mater. Charact. 62, 382 (2011)

    Article  CAS  Google Scholar 

  15. M.B. Askari, Z.T. Banizi, S. Soltani, M. Seifi, Optik 157, 230 (2018)

    Article  CAS  Google Scholar 

  16. D. Yi-Bo, L. Zhang, M. Ruan, C.-G. Niu, X.-J. Wen, C. Liang, X.-G. Zhang, G.-M. Zeng, Mater. Chem. Phys. 212, 69 (2018)

    Article  Google Scholar 

  17. M. Madani, K. Omri, N. Fattah, A. Ghorbal, X. Portier, J. Mater. Sci.: Mater. Electron. 28, 12977 (2017)

    CAS  Google Scholar 

  18. K. Omri, L. El Mir, Superlattices Microstruct. 70, 24 (2014)

    Article  CAS  Google Scholar 

  19. K. Omri, I. Najeh, L. El Mir, Ceram. Int. 42, 8940 (2016)

    Article  CAS  Google Scholar 

  20. T. Homann, T. Bredow, K. Jug, Surf. Sci. 555, 135 (2004)

    Article  CAS  Google Scholar 

  21. Z.M. Zhao, J. Sun, G.J. Zhang, L.J. Bai, J. Alloys Comp. 652, 307 (2015)

    Article  CAS  Google Scholar 

  22. S.G. Kumar, L.G. Devi, J. Phys. Chem. A 115, 13211 (2011)

    Article  CAS  Google Scholar 

  23. Y.L. Lee, C.F. Chi, S.Y. Liau, Chem. Mater. 22, 922 (2010)

    Article  CAS  Google Scholar 

  24. Z.Q. Lin, Y.K. Lai, R.G. Hu, J. Li, R.G. Du, C.J. Lin, Electrochim. Acta 55, 8717 (2010)

    Article  CAS  Google Scholar 

  25. K. Omri, A. Bettaibi, K. Khirouni, L. El Mir, Phys. B 537, 167 (2018)

    Article  CAS  Google Scholar 

  26. B.G.T. Keerthana, P. Murugakoothan, Vacuum 159, 476 (2019)

    Article  Google Scholar 

  27. Y. Nakai, M. Azuma, M. Muraoka, H. Kobayashi, S. Higashimoto, Mol. Catal. 443, 203 (2017)

    Article  CAS  Google Scholar 

  28. L. Shi, H. Shen, L. Jiang, X. Li, Mater. Lett. 61, 4735 (2007)

    Article  CAS  Google Scholar 

  29. X. Linhua, H. Shen, X. Li, R. Zhu, J. Lumin. 130, 2123 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This research project was supported by a grant from the Deanship of Scientific Research, Princess Nora Bint Abdul Rahman University (35-K-69).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Omri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alharbi, F., Omri, K., Yahia, I. et al. Micro-structural Evolution and Optical Performance of TiO2 Nano-particles and CdS–TiO2 Nano-composite Materials. J Inorg Organomet Polym 30, 1629–1633 (2020). https://doi.org/10.1007/s10904-019-01304-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01304-y

Keywords

Navigation