Skip to main content
Log in

Histogenesis Stages of Osteogenic Grafts in Culture Medium and a Recipient Bed

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

This paper describes the stages of osteogenic differentiation of chondrogenic graft in a culture medium and recipient bed (defect of bone tissue). In the culture medium, cell and matrix transformations, formation of vascular cavities with an endothelial lining and matrix vesicles in osteoblasts (the first stage of mineralization) take place in the chondrograft. The expression of chondrogenic genes and proteins is replaced by the expression of genes and proteins of the osteogenic stage of differentiation. Further stages of bone tissue histogenesis occur in the recipient bed. Humoral factors of regulation and ductile substance enter through the formed anastomosis of the vessels of osteodysplastica and recipient. On their basis, the formation of an organ-specific regenerate is completed with full integration into the recipient organism. These results are a starting point for further use of osteogenic grafts in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Anderson, H.C., Garimella, R., and Tague, S.E., The role of matrix vesicles in growth plate development and biomineralization, Front. Biosci., 2005, vol. 10, pp. 822–837.

    Article  CAS  Google Scholar 

  2. Bose, S., Roy, M., and Bandyopadhyay, A., Recent advances in bone tissue engineering scaffolds, Trends Biotechnol. 2012, vol. 30, no. 10, pp. 546–554. https://doi.org/10.1016/j.tibtech.2012.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Campbell, E.J., Campbell, G.M, and Hanley, D.A., The effect of parathyroid hormone and teriparatide on fracture healing, Expert Opin. Biol. Ther., 2015, vol. 1, pp. 119–129.

    Article  Google Scholar 

  4. Claes, L., Recknagel, S., and Ignatius, A., Fracture healing under healthy and inflammatory conditions, Nat. Rev. Rheumatol., 2012, vol. 8, pp. 133–143.

    Article  CAS  Google Scholar 

  5. Dai, J. and Rabie, A.B., VEGF: an essential mediator of both angiogenesis and endochondral ossification, J. Dent. Res., 2007, vol. 86, pp. 937–950.

    Article  CAS  Google Scholar 

  6. Danilov, R.K., Borovaya, N.D., and Klochkov, T.G., Experimental and histological analysis of histogenesis and tissue regeneration (some results of the 20th century and perspectives on further research), Morfologiia, 2000, vol. 118, no. 4, pp. 7–16.

    CAS  PubMed  Google Scholar 

  7. Day, T.F. and Yang, Y., Wnt and Hedgehog signaling pathways in bone development, J. Bone Joint Surg. Ser. A, 2008, vol. 90, suppl. 1, pp. 19–24.

    Article  Google Scholar 

  8. Day, T.F., Guo, X., Garrett-Beal, L., and Yang, Y., Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis, Dev. Cell, 2005, vol. 8, pp. 739–750.

    Article  CAS  Google Scholar 

  9. Deckers, M.M., van Bezooijen, R.L., van der Horst, G., Hoogendam, J., van Der Bent, C., Papapoulos, S.E., and Clemens, W.G.M., Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A, Endocrinology, 2002, vol. 143, pp. 1545–1553.

    Article  CAS  Google Scholar 

  10. Deev, R.V., Nikolaenko, N.S., Tsupkina, N.V., Gololobov, V.G., Patokin, I.L., and Pinaev, G.P., Development and morphofunctional characterization of the osteoblastic phenotype in cell culture in vitro, Tsitologiia, 2004, vol. 46, no. 3, pp. 185–190.

    CAS  PubMed  Google Scholar 

  11. Dergilev, K.V., Makarevich, P.I., Menshikov, M.Yu., and Parfyonova, E.V., Application of tissue engineered constructs on the basis of cell sheets for restoration of tissues and organs, Geny Kletki, 2016, vol. XI, no. 3, pp. 23–32. https://elibrary.ru/download/elibrary_29321516_85895974.pdf.

  12. Drukker, M., Katchman, H., Katz, G., Eventov-Friedman, S., Shezen, E., Hornstein, E., Mandelboim, O., Reisner, Y., and Benvenisty, N., Human embryonic stem cells and their differentiated derivatives are less susceptible to immune rejection than adult cells, Stem Cells, 2006, vol. 24, pp. 221–229.

    Article  Google Scholar 

  13. Franceschi, R.T., Ge, C., Xiao, G., Roca, H., and Jiang, D., Transcriptional regulation of osteoblasts, Cells Tiss. Organs, 2009, vol. 189, pp. 144–152.

    Article  CAS  Google Scholar 

  14. Franz-Odendaal, T.A., Hall, B.K., and Witten, P.E., Buried alive—how osteoblasts become osteocytes, Dev. Biol., 2006, vol. 235, pp. 176–190.

    CAS  Google Scholar 

  15. Fridenshtein, A.Ya. and Chertkov, I.A., Kletochnye osnovy immuniteta (Cellular Basis of Immunity), Moscow: Meditsina, 1969.

  16. Fridenshtein, A.Ya. and Luriya, E.A., Kletochnye osnovy krovetvornogo mikrookruzheniya (Cellular Basis of Hematopoietic Microenvironment), Moscow: Meditsina, 1980.

  17. Gololobov, V.G. and Deev, R.V., Stromal stem cells and osteoblastic cellular differon, Morfologiia, 2003, vol. 123, no. 1, pp. 9–19.

    CAS  PubMed  Google Scholar 

  18. Gong, Y.Y., Xue, J.X., Zhang, W.J., Zhou, G.D., Liu, W., and Cao, Y., A sandwich model for engineering cartilage with acellular cartilage sheets and chondrocytes, Biomaterials, 2011, vol. 32, pp. 2265–2273.

    Article  CAS  Google Scholar 

  19. Ham, A.W. and Cormack, D.H., Histology, Philadelphia: Lippincott, 1979.

    Google Scholar 

  20. Javassoli, M. and Fridenstein, A., Homopoetic stromal microenriromently, Am. Hematol., 1983, vol. 15, pp. 151–203.

    Google Scholar 

  21. Kairiyama, E., Legal system for tissue banking in Latin America, in Legal Basis of Global Tissue Banking. Proactive Clinical Perspectives, Singapore: World Scientific, 2016, pp. 149–196.

    Google Scholar 

  22. Kaneshiro, N., Sato, M., Ishihara, M., Mitani, G., Sakai, H., Kikuchi, T., and Mochida, J., Cultured articular chondrocytes sheets for partial thickness cartilage defects utilizing temperature-responsive culture dishes, Eur. Cells Materials, 2007, vol. 13, pp. 87–92. https://doi.org/10.22203/eCM.v013a09

    Article  CAS  Google Scholar 

  23. Kiyoto, I., Masaharu, T., and Fujio, S., Meckel’s cartilage chondrocytes evoke bone-like matrix and further transform into osteocyte-like cells in culture, Anat. Rec., 1966, vol. 245, no. 1, pp. 25–35.

    Google Scholar 

  24. Komori, T., Regulation of bone development and maintenance by Runx2, Front. Biosci., 2008, vol. 13, pp. 898–903.

    Article  CAS  Google Scholar 

  25. Korel, A.V., Zaydman, A.M., and Kolokoltseva, T.D., The method of obtaining donor chondroblasts, RF Patent no. 2285039, Byull. Izobret., 2006, no. 28.

  26. Maes, C., Carmeliet, P., Moermans, K., Stockmans, I., Smets, N., Collen, D., Bouillon, R., and Carmeliet, G., Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF 164 and VEGF 188, Mech. Dev., 2002, vol. 111, pp. 61–73.

    Article  CAS  Google Scholar 

  27. Nasharu, T.N., Martinez-Fernandez, A., and Furzic, A., Induced pluripotent stem cells: developmental biology to regulatory medicine, Nat. Rev. Cardiol., 2010, vol. 7, pp. 700–710.

    Article  Google Scholar 

  28. Omel’yanenko, N.P. and Slutskii, L.I., Soedinitel’naya tkan' (gistofiziologiya i biohimiya) (Connective Tissue (Histophysiology and Biochemistry)), Moscow: Izvestiya, 2010, vol. 1.

  29. Roach, H.I., Erenpreisa, J., and Aigner, T., Osteogenic differentiation of hypertrophic chondrocytes involves asymmetric cell division and apoptosis, J. Cell Biol., 1955, vol. 131, pp. 483–494.

    Article  Google Scholar 

  30. Rodan, G.A. and Rodan, S.B., Kostnye kletki. Osteoporoz (Bone Cells. Osteoporosis), Moscow: Binom–Nevskii Dialekt, 2000, pp. 15–84.

  31. Rodan, G.A., Heath, J.K., Yoon, K., Noda, M., and Rodan, S.B., Diversity of the osteoblastic phenotype, in Cell and Molecular Biology of Vertebrate Hard Tissues, New York: Wiley, 1988, pp. 78–85.

    Google Scholar 

  32. Rodionova, N.V., Funktsional’naya morfologiya kletok v osteogeneze (Functional Cell Morphology in Osteogenesis), Minsk: Novukova Dumka, 1989.

  33. Samavedi, S., Whittington, A.R., and Goldstein, A.S., Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior, Acta Biomater., 2013, vol. 9, pp. 8037–8045.

    Article  CAS  Google Scholar 

  34. Street, J., Bao, M., de, Guzman, L., Bunting, S., Peale, F.V., Ferrara, N., Steinmetz, H., Hoeffel, J., Cleland, J.L., Daugherty, A., van Bruggen, N., Redmond, H.P., Carano, R.A., and Filvaroff, E.H., Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover, Proc. Natl. Acad. Sci. U. S. A., 2002, vol. 99, pp. 9656–9661.

    Article  CAS  Google Scholar 

  35. Takahashi, K. and Yamanaka, S., Induced pluripotent stem cells in medicine and biology, Development, 2013, vol. 140, pp. 2457–2461. https://doi.org/10.1242/dev.092551

    Article  CAS  PubMed  Google Scholar 

  36. Wang, Y., Wan, C., Deng, L., Liu, X., Cao, X., Gilbert, S.R., Mary, L., Bouxsein, M.L., Faugere, M.C., Guldberg, R.E., Gerstenfeld, L.C., Haase, V.H., Johnson, R.S., Schipani, E., and Clemens, T., The hypoxia-inducible factor a pathway couples angiogenesis to osteogenesis during skeletal development, J. Clin. Invest., 2007, vol. 117, pp. 1616–1626.

    Article  CAS  Google Scholar 

  37. Weismann, P., Meyer, U., Plate, U., and Honling, H.Y., Aspects of collagen mineralisation in hard tissue formation, Int. Rev. Cytol., 2005, vol. 1, pp. 121–156.

    Google Scholar 

  38. Zaidman, A.M. and Borodin, Yu.I., Morphogenesis of intervertebral osteochondrosis, Mezhdunar. Zh. Prikl. Fundam. Issled., 2015, vol. 11, no. 4, pp. 523–526.

    Google Scholar 

  39. Zaidman, A.M., Mikhailovsky, M.V., Zaviyalova, Y.L., Suzdalov, V.A., and Sadovoy, M.A., Structural and functional peculiarities of spine deformity development in neurofibromatosis NF-1, Byull. Sib. Med., 2010a, vol. 9, no. 6, pp. 34–40. https://doi.org/10.20538/1682-0363-2010-6-34-40

    Article  Google Scholar 

  40. Zaidman, A.M., Kim, I.I., and Sadovoy, M.A., A method of obtaining 3D chondrotransplant, RF Patent no. 2392973, Byull. Izobret., 2010b, no. 18.

  41. Zaidman, A.M., Schelkunova, E.I., Strokova, E.L., Korel, A.V., Rakhmatillaev, Sh.N., and Shevchenko, A.I., 3D chondrograft: bone defect replacement material, Khir. Pozvonochnika, 2012, vol. 4, pp. 65–72. https://doi.org/10.14531/ss2012.4.65-72

    Article  Google Scholar 

  42. Zaidman, A.M., Shchelkunova, E.I., Strokova, E.L., Shevchenko, A.I., Lastevsky, A.D., and Rerikh, V.V., Experimental correction of pathological changes in the intervertebral disc using tissue engineering, Khir. Pozvonochnika, 2013, vol. 1, pp. 80–88. https://doi.org/10.14531/ss2013.1.80-88

    Article  Google Scholar 

  43. Zaidman, A.M., Korel, A.V., Shchelkunova, E.I., and Ivanova, N.A., The method of obtaining 3D osteotransplant, RF Patent no. 2574942, Byul. Izobret., 2016, no. 4.

  44. Zavarzin, A.A., Osnovy chastnoi tsitologii i sravnitel’noi gistologii mnogokletochnykh zhivotnykh (Fundamentals of Special Cytology and Comparative Histology of Metazoans), Leningrad: Nauka, 1976.

Download references

ACKNOWLEDGMENTS

We express our sincere gratitude to P.M. Borodin and O.L. Serov (Institute of Cytology and Genetics) for valuable advices in the process of doing this work.

Funding

This work was performed in the framework of a state order of the Ministry of Health of the Russian Federation to carry out research and development, state registration no. 115071510020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Zaydman.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. Experiments with animals were in accordance with the Helsinki Declaration of the World Medical Association and Guidelines for experimental work with animals (approved by an order of the Ministry of Health of the Russian Federation, March 19, 2003, no. 226). The permission was obtained from the Local Ethics Committee of NIITO, Ministry of Health of Russia, protocol 019/15 of December, 28, 2015.

Additional information

Translated by I. Fridlyanskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaydman, A.M., Shevchenko, I.A., Strokova, E.L. et al. Histogenesis Stages of Osteogenic Grafts in Culture Medium and a Recipient Bed. Cell Tiss. Biol. 13, 331–343 (2019). https://doi.org/10.1134/S1990519X19050109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X19050109

Keywords:

Navigation