Skip to main content

Advertisement

Log in

Structural Evolution of Medium-Sized Phosphorus Clusters (P20–P36) from Ab Initio Global Search

  • Brief Communication
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The ground state configurations of phosphorus clusters, Pn (n = 20–36), were investigated by using the comprehensive genetic algorithm combined with the first-principles calculation method. The medium sized phosphorus structures are assembled with small subunits P1, P4, P6, P7, P8, and P10, which are jointed by a P2 dimer. These phosphorus clusters can be divided into three groups by the subunit number, i.e. P20 with two, P21–30 with three, and P31–36 with four subunits, respectively. All the Pn clusters in the third group can be regarded as adding a P8 subunit and a P2 dimer to the corresponding clusters Pn−10. The binding energy per atom and the HOMO–LUMO gap show distinct odd–even oscillations. It was found that the even-sized clusters are more stable than the odd-sized ones. All the atoms of the even-sized clusters are threefold, while the odd-sized clusters always have only one twofold atom in P1 or P7 unit. For larger sized Pn clusters with 38 ≤ n ≤ 78, we compared the configurations consisting of pure P8 units and mixed P8 and P10 units. Clusters with mixed P8 and P10 units are always energetically favorable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. J. Donohue The Structures of the Elements (Wiley, New York, 1974).

    Google Scholar 

  2. R. O. Jones, G. Gantefor, S. Hunsicker, and P. Pieperhoff (1995). J. Chem. Phys.103, 9549.

    Article  CAS  Google Scholar 

  3. A. V. Bulgakov, O. F. Bobrenok, I. Ozerov, W. Marine, S. Giorgio, A. Lassesson, and E. E. B. Campbell (2004). Appl. Phys. A79, 1369.

    Article  CAS  Google Scholar 

  4. A. V. Bulgakov, O. F. Bobrenok, and V. I. Kosyakov (2000). Chem. Phys. Lett.320, 19.

    Article  CAS  Google Scholar 

  5. Z. Y. Liu, R. B. Huang, and L. S. Zheng (1996). Z. Phys. D38, 171.

    Article  CAS  Google Scholar 

  6. R. B. Huang, et al. (1995). Int. J. Mass. Spectrom. Ion. Process.151, 55.

    Article  CAS  Google Scholar 

  7. A. V. Bulgakov, O. F. Bobrenok, V. I. Kosyakov, I. Ozerov, W. Marine, M. Heden, F. Rohmund, and E. E. B. Campbell (2002). Phys. Solid State44, 617.

    Article  CAS  Google Scholar 

  8. R. O. Jones and D. Hohl (1990). J. Chem. Phys.92, 6710.

    Article  CAS  Google Scholar 

  9. R. O. Jones and G. Seifert (1992). J. Chem. Phys.96, 7564.

    Article  CAS  Google Scholar 

  10. P. Ballone and R. O. Jones (1994). J. Chem. Phys.100, 4941.

    Article  CAS  Google Scholar 

  11. M. Häser and O. Treutler (1995). J. Chem. Phys.102, 3703.

    Article  Google Scholar 

  12. M. Häser (1994). J. Am. Chem. Soc.116, 6925.

    Article  Google Scholar 

  13. M. Häser, U. Schneide, and R. Ahlrichs (1992). J. Am. Chem. Soc.114, 9551.

    Article  Google Scholar 

  14. L. Guo, H. S. Wu, and Z. H. Jin (2004). J. Mol. Struct.677, 59.

    Article  CAS  Google Scholar 

  15. D. Wang, C. L. Xiao, and W. G. Xu (2006). J. Mol. Struct.759, 225.

    Article  CAS  Google Scholar 

  16. B. J. Persson and P. R. Taylor (1997). J. Chem. Phys.107, 5051.

    Article  Google Scholar 

  17. J. N. Feng, M. Cui, X. R. Huang, P. Otto, and F. L. Gu (1998). J. Mol. Struct.425, 201.

    Article  CAS  Google Scholar 

  18. M. D. Chen, W. B. Chen, J. Liu, L. S. Zheng, and Q. E. Zang (2007). J. Phys. Chem. A111, 216.

    Article  CAS  Google Scholar 

  19. M. D. Chen, R. B. Huang, L. S. Zheng, and C. T. Au (1999). Main Group Met. Chem.22, 479.

    CAS  Google Scholar 

  20. M. D. Chen, J. T. Li, R. B. Huang, L. S. Zheng, and C. T. Au (1999). Chem. Phys. Lett.305, 439.

    Article  CAS  Google Scholar 

  21. M. D. Chen, R. B. Huang, L. S. Zheng, and C. T. Au (2000). J. Mol. Struct.499, 195.

    Article  CAS  Google Scholar 

  22. M. D. Chen, R. B. Huang, L. S. Zheng, Q. E. Zhang, and C. T. Au (2000). Chem. Phys. Lett.325, 22.

    Article  CAS  Google Scholar 

  23. M. D. Chen, H. B. Luo, Z. J. Qiu, Q. E. Zhang, and C. T. Au (2000). Main Group Met. Chem.23, 291.

    CAS  Google Scholar 

  24. S. R. Elliott, J. C. Dore, and E. Marseglia (1985). J. Phys. Colloq. C8, 349.

    Google Scholar 

  25. B. Song and P. L. Cao (2001). Phys. Lett. A291, 343.

    Article  CAS  Google Scholar 

  26. S. Katsyuba, R. Schmutzlerb, and J. Grunenberg (2005). Dalton Trans.9, 1701.

    Article  Google Scholar 

  27. P. C. Hiberty and F. Volatron (2007). Heteroat. Chem.18, 129.

    Article  CAS  Google Scholar 

  28. A. J. Karttunen, M. Linnllahti, and T. A. Pakkanen (2007). Chem. Eur. J.13, 5232.

    Article  CAS  Google Scholar 

  29. T. Xue, J. Luo, S. Shen, F. Y. Li, and J. J. Zhao (2010). Chem. Phys. Lett.485, 26.

    Article  CAS  Google Scholar 

  30. S. Böcker and M. Häser (1995). Z. Anorg. Allg. Chem.621, 258.

    Article  Google Scholar 

  31. M. Scheer, G. Balázs, and A. Seitz (2010). Chem. Rev.110, 4236.

    Article  CAS  Google Scholar 

  32. B. Delley (1990). J. Chem. Phys.92, 508.

    Article  CAS  Google Scholar 

  33. B. Delley (2000). J. Chem. Phys.113, 7756.

    Article  CAS  Google Scholar 

  34. J. J. Zhao, R. L. Shi, L. W. Sai, X. M. Huang, and Y. Su (2016). Mol. Simul.42, 809.

    Article  CAS  Google Scholar 

  35. J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett.77, 3865.

    Article  CAS  Google Scholar 

  36. N. J. Brassington, H. G. M. Edwards, and D. A. Long (1981). J. Raman Spectrosc.11, 346.

    Article  CAS  Google Scholar 

  37. J. J. Zhao, X. L. Zhou, X. S. Chen, J. L. Wang, and J. Jellinek (2006). Phys. Rev. B73, 115418.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities of China (Nos. 2018B24114, DUT18LK07) and the National Natural Science Foundation of China (11804076, 11604039, 11904251, 41641038, 61603070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sai, L., Huang, X., Liang, X. et al. Structural Evolution of Medium-Sized Phosphorus Clusters (P20–P36) from Ab Initio Global Search. J Clust Sci 31, 567–574 (2020). https://doi.org/10.1007/s10876-019-01754-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01754-x

Keywords

Navigation