Skip to main content
Log in

Multisymplecticity of Hybridizable Discontinuous Galerkin Methods

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we prove necessary and sufficient conditions for a hybridizable discontinuous Galerkin method to satisfy a multisymplectic conservation law, when applied to a canonical Hamiltonian system of partial differential equations. We show that these conditions are satisfied by the “hybridized” versions of several of the most commonly used finite element methods, including mixed, nonconforming, and discontinuous Galerkin methods. (Interestingly, for the continuous Galerkin method in dimension greater than one, we show that multisymplecticity only holds in a weaker sense.) Consequently, these general-purpose finite element methods may be used for structure-preserving discretization (or semidiscretization) of canonical Hamiltonian systems of ODEs or PDEs. This establishes multisymplecticity for a large class of arbitrarily high-order methods on unstructured meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. This result holds since e lies in an affine hyperplane in \( \mathbb {R}^m \), so \( x \cdot \mathbf {n} \) is constant on e. It follows that the degree-\(( r + 1 )\) elements of the Raviart–Thomas space nevertheless have degree-r normal traces.

References

  1. Abraham, R., Marsden, J.E.: Foundations of mechanics. Benjamin/Cummings Publishing Co. Inc. Advanced Book Program, Reading, Mass. (1978). Second edition, revised and enlarged, With the assistance of Tudor Raţiu and Richard Cushman

  2. Abraham, R., Marsden, J.E., Ratiu, T.: Manifolds, tensor analysis, and applications. Applied Mathematical Sciences, vol. 75. Second edn. Springer-Verlag, New York (1988)

  3. Agoshkov, V.I.: Poincaré-Steklov’s operators and domain decomposition methods in finite-dimensional spaces. In: First International Symposium on Domain Decomposition Methods for Partial Differential Equations (Paris, 1987), pp. 73–112. SIAM, Philadelphia, PA (1988)

  4. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2001/2002)

    Article  MathSciNet  Google Scholar 

  5. Ascher, U.M., McLachlan, R.I.: Multisymplectic box schemes and the Korteweg–de Vries equation. Applied Numerical Mathematics 48(3–4), 255–269 (2004)

    Article  MathSciNet  Google Scholar 

  6. Belishev, M., Sharafutdinov, V.: Dirichlet to Neumann operator on differential forms. Bull. Sci. Math. 132(2), 128–145 (2008)

    Article  MathSciNet  Google Scholar 

  7. Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. Springer Series in Computational Mathematics, vol. 15. Springer-Verlag, New York (1991)

    Book  Google Scholar 

  8. Bridges, T.J.: Symplecticity, reversibility and elliptic operators. In: Nonlinear dynamical systems and chaos (Groningen, 1995), Progr. Nonlinear Differential Equations Appl., vol. 19, pp. 1–20. Birkhäuser, Basel (1996)

    Google Scholar 

  9. Bridges, T.J.: Multi-symplectic structures and wave propagation. Math. Proc. Cambridge Philos. Soc. 121(1), 147–190 (1997)

    Article  MathSciNet  Google Scholar 

  10. Bridges, T.J., Reich, S.: Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity. Phys. Lett. A 284(4-5), 184–193 (2001)

    Article  MathSciNet  Google Scholar 

  11. Chen, J.B.: Variational integrators and the finite element method. Appl. Math. Comput. 196(2), 941–958 (2008)

    MathSciNet  MATH  Google Scholar 

  12. Cockburn, B.: Static condensation, hybridization, and the devising of the HDG methods. In: Building bridges: connections and challenges in modern approaches to numerical partial differential equations, Lect. Notes Comput. Sci. Eng., vol. 114, pp. 129–177. Springer (2016)

  13. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)

    Article  MathSciNet  Google Scholar 

  14. Cockburn, B., Gopalakrishnan, J., Wang, H.: Locally conservative fluxes for the continuous Galerkin method. SIAM J. Numer. Anal. 45(4), 1742–1776 (2007)

    Article  MathSciNet  Google Scholar 

  15. de Donder, T.: Théorie Invariantive du Calcul des Variations. Second edn. Gauthier-Villars (1935)

  16. Frank, J., Moore, B.E., Reich, S.: Linear PDEs and numerical methods that preserve a multisymplectic conservation law. SIAM J. Sci. Comput. 28(1), 260–277 (2006)

    Article  MathSciNet  Google Scholar 

  17. Gotay, M.J.: A multisymplectic framework for classical field theory and the calculus of variations. I. Covariant Hamiltonian formalism. In: Mechanics, analysis and geometry: 200 years after Lagrange, North-Holland Delta Ser., pp. 203–235. North-Holland, Amsterdam (1991)

    Chapter  Google Scholar 

  18. Gotay, M.J., Isenberg, J., Marsden, J.E.: Momentum maps and classical relativistic fields. Part II: Canonical analysis of field theories (2004a). arXiv:math-ph/0411032

  19. Gotay, M.J., Isenberg, J., Marsden, J.E., Montgomery, R.: Momentum maps and classical relativistic fields. Part 1: Covariant Field Theory (2004b). arXiv:physics/9801019v2 [math-ph]

  20. Griesmaier, R., Monk, P.: Discretization of the wave equation using continuous elements in time and a hybridizable discontinuous Galerkin method in space. J. Sci. Comput. 58(2), 472–498 (2014)

    Article  MathSciNet  Google Scholar 

  21. Guo, H.Y., Ji, X.M., Li, Y.Q., Wu, K.: A note on symplectic, multisymplectic scheme in finite element method. Commun. Theor. Phys. (Beijing) 36(3), 259–262 (2001)

    Article  MathSciNet  Google Scholar 

  22. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration, Springer Series in Computational Mathematics, vol. 31. Second edn. Springer-Verlag, Berlin (2006)

  23. Kijowski, J., Tulczyjew, W.M.: A symplectic framework for field theories, Lecture Notes in Physics, vol. 107. Springer-Verlag, Berlin-New York (1979)

  24. Lawruk, B., Śniatycki, J., Tulczyjew, W.M.: Special symplectic spaces. J. Differential Equations 17, 477–497 (1975)

    Article  MathSciNet  Google Scholar 

  25. Lew, A., Marsden, J.E., Ortiz, M., West, M.: Asynchronous variational integrators. Arch. Ration. Mech. Anal. 167(2), 85–146 (2003)

    Article  MathSciNet  Google Scholar 

  26. Marsden, J.E., Hughes, T.J.R.: Mathematical foundations of elasticity. Dover Publications, Inc., New York (1994). Corrected reprint of the 1983 original

  27. Marsden, J.E., Patrick, G.W., Shkoller, S.: Multisymplectic geometry, variational integrators, and nonlinear PDEs. Comm. Math. Phys. 199(2), 351–395 (1998)

    Article  MathSciNet  Google Scholar 

  28. Marsden, J.E., Pekarsky, S., Shkoller, S., West, M.: Variational methods, multisymplectic geometry and continuum mechanics. J. Geom. Phys. 38(3-4), 253–284 (2001)

    Article  MathSciNet  Google Scholar 

  29. Marsden, J.E., Shkoller, S.: Multisymplectic geometry, covariant Hamiltonians, and water waves. Math. Proc. Cambridge Philos. Soc. 125(3), 553–575 (1999)

    Article  MathSciNet  Google Scholar 

  30. McDonald, F., McLachlan, R.I., Moore, B.E., Quispel, G.: Travelling wave solutions of multisymplectic discretizations of semi-linear wave equations. Journal of Difference Equations and Applications 22(7), 913–940 (2016)

    Article  MathSciNet  Google Scholar 

  31. McLachlan, R., Offen, C.: Preservation of bifurcations of Hamiltonian boundary value problems under discretisation (2018a). arXiv:1804.07468 [math.NA]

  32. McLachlan, R.I., Offen, C.: Bifurcation of solutions to Hamiltonian boundary value problems. Nonlinearity 31(6), 2895 (2018b)

    Article  MathSciNet  Google Scholar 

  33. McLachlan, R.I., Ryland, B.N., Sun, Y.: High order multisymplectic Runge–Kutta methods. SIAM Journal on Scientific Computing 36(5), A2199–A2226 (2014)

    Article  MathSciNet  Google Scholar 

  34. McLachlan, R.I., Sun, Y., Tse, P.: Linear stability of partitioned Runge–Kutta methods. SIAM Journal on Numerical Analysis 49(1), 232–263 (2011)

    Article  MathSciNet  Google Scholar 

  35. Moore, B., Reich, S.: Backward error analysis for multi-symplectic integration methods. Numer. Math. 95(4), 625–652 (2003)

    Article  MathSciNet  Google Scholar 

  36. Partridge, P.W., Brebbia, C.A., Wrobel, L.C.: The dual reciprocity boundary element method. International Series on Computational Engineering. Computational Mechanics Publications, Southampton; copublished with Elsevier Applied Science, London (1992)

  37. Reich, S.: Finite volume methods for multi-symplectic PDEs. BIT 40(3), 559–582 (2000a)

    Article  MathSciNet  Google Scholar 

  38. Reich, S.: Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations. J. Comput. Phys. 157(2), 473–499 (2000b)

    Article  MathSciNet  Google Scholar 

  39. Rhebergen, S., Cockburn, B.: A space-time hybridizable discontinuous Galerkin method for incompressible flows on deforming domains. J. Comput. Phys. 231(11), 4185–4204 (2012)

    Article  MathSciNet  Google Scholar 

  40. Rhebergen, S., Cockburn, B.: Space-time hybridizable discontinuous Galerkin method for the advection-diffusion equation on moving and deforming meshes. In: The Courant-Friedrichs-Lewy (CFL) condition, pp. 45–63. Birkha̋user/Springer, New York (2013)

    Chapter  Google Scholar 

  41. Sánchez, M.A., Ciuca, C., Nguyen, N.C., Peraire, J., Cockburn, B.: Symplectic Hamiltonian HDG methods for wave propagation phenomena. J. Comput. Phys. 350, 951–973 (2017)

    Article  MathSciNet  Google Scholar 

  42. Vankerschaver, J., Liao, C., Leok, M.: Generating functionals and Lagrangian partial differential equations. J. Math. Phys. 54(8), 082,901, 22 (2013)

    Article  MathSciNet  Google Scholar 

  43. Weyl, H.: Geodesic fields in the calculus of variation for multiple integrals. Ann. of Math. (2) 36(3), 607–629 (1935)

    Article  MathSciNet  Google Scholar 

  44. Zhen, L., Bai, Y., Li, Q., Wu, K.: Symplectic and multisymplectic schemes with the simple finite element method. Phys. Lett. A 314(5-6), 443–455 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the Marsden Fund of the Royal Society of New Zealand and by the Simons Foundation (Award #279968 to Ari Stern). We also wish to thank the anonymous referees for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ari Stern.

Additional information

Communicated by Arieh Iserles.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McLachlan, R.I., Stern, A. Multisymplecticity of Hybridizable Discontinuous Galerkin Methods. Found Comput Math 20, 35–69 (2020). https://doi.org/10.1007/s10208-019-09415-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-019-09415-1

Keywords

Mathematics Subject Classification

Navigation