Skip to main content
Log in

Analysis of Long-Term Biological Data Series: Methodological Problems and Possible Solutions

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

Long-term (multiyear) series of biological data have some specific features. The analysis of such data is treated as a statistical problem of the extraction of long-term signal from the general variance, which is determined by a complex of factors. An attempt is made to systematize the key points that should be considered in this problem. The main sources of data variability are considered, including the temporal and spatial variability of various scales and methodical and statistical sources. The methodological approaches to the assessment of these effects and the corresponding data correction are briefly discussed. This requires careful and reasoned data preparation and the choice of the appropriate statistical model and analytical methods. Some of these approaches are illustrated by case studies. However, the problem is too complex to have a single, universal solution that is suitable for any situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Notes

  1. The effect was named after an absent-minded entomologist from Jules Verne’s novel Dick Sand, Or, A Captain at Fifteen, who confused Africa with South America and was amazed discovering the tsetse fly.

REFERENCES

  1. Anderson, M.J., A new method for non-parametric multivariate analysis of variance, Aust. Ecol., 2001, vol. 26, pp. 32–46.

    Google Scholar 

  2. Anderson, M.J., Distance-based tests for homogeneity of multivariate dispersions, Biometrics, 2006, vol. 62, pp. 245–253.

    Article  Google Scholar 

  3. Anderson, M.J., Gorley, R.N., and Clarke, K.R., PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods, Plymouth: PRIMER-E, 2008.

    Google Scholar 

  4. Andrew, N.L. and Mapstone, B.D., Sampling and the description of spatial pattern in marine ecology, Annu. Rev. Oceanogr. Mar. Biol., 1987, vol. 25, pp. 39–90.

    Google Scholar 

  5. Azovsky, A.I. and Chertoprud, E.S., Spatio-temporal dynamics of the White Sea littoral Harpacticoid community, Oceanology (Engl. Transl.), 2003, vol. 43, no. 1, pp. 103–111.

  6. Burkovsky, I.V. and Mazei, Yu.A., Interannual variability of seasonal succession in psammophilous ciliate community in the White Sea, Usp. Sovrem. Biol., 2008, vol. 128, pp. 591–608.

    Google Scholar 

  7. Carstensen, J. and Lindegarth, M., Confidence in ecological indicators: a framework for quantifying uncertainty components from monitoring data, Ecol. Indic., 2016, vol. 67, pp. 306–317.

    Article  Google Scholar 

  8. Clarke, K.R. and Warwick, R.M., Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, Plymouth: Plymouth Mar. Lab., 2001.

    Google Scholar 

  9. Clarke, R.T., Estimating confidence of European WFD ecological status class and WISER Bioassessment Uncertainty Guidance Software (WISERBUGS), Hydrobiologia, 2013, vol. 704, no. 1, pp. 39–56.

    Article  Google Scholar 

  10. Colwell, R.K., Chao, A., Gotelli, N.J., Lin, S.-L., Mao, C.X., Chazdon, R.L., and Longino, J.T., Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages, J. Plant Ecol., 2012, vol. 5, pp. 3–21.

    Article  Google Scholar 

  11. Cressie, N.A.C. and Wikle, C.K., Statistics for Spatio-Temporal Data, Hoboken, NJ: Wiley, 2011.

    Google Scholar 

  12. Elahi, R., Birkeland, C., Sebens, K.P., Turner, K.R., and Dwyer, T.R., Limited change in the diversity and structure of subtidal communities over four decades, Mar. Biol., 2013, vol. 160, no. 12, pp. 3209–3219.

    Article  Google Scholar 

  13. Fisher, J.A.D., Casini, M., Frank, K.T., Mollmann, C., Leggett, W.C., and Daskalov, G., The importance of within-system spatial variation in drivers of marine ecosystem regime shifts, Philos. Trans. R. Soc., B, 2015, vol. 370. https://doi.org/10.1098/rstb.2013.0271

    Article  Google Scholar 

  14. Fortin, M.-J. and Dale, M., Spatial Analysis: A Guide for Ecologists, N.-Y.: Cambridge Univ. Press, 2005.

    Google Scholar 

  15. Frid, C.L., Temporal variability in the benthos: does the sea floor function differently over time? J. Exp. Mar. Biol. Ecol., 2011, vol. 400, nos. 1–2, pp. 99–107.

    Article  Google Scholar 

  16. Giere, O., Meiobenthology: The Microscopic Motile Fauna of Aquatic Sediments, Berlin: Springer-Verlag, 2009.

    Google Scholar 

  17. Hammer, Ø., Harper, D.A.T., and Ryan, P.D., PAST: Paleontological Statistics Software Package for Education and Data Analysis, Palaeontol. Electron., 2001, vol. 4, no. 1.

  18. Hjermann, D.Ø., Fisher, J.A.D., Rouyer, T., Frank, K.T., and Stenseth, N.C., Spatial analysis of North Sea cod recruitment: concurrent effects of changes in spawning stock biomass, temperature and herring abundance, Mar. Ecol.: Prog. Ser., 2013, vol. 480, pp. 263–275.

    Article  Google Scholar 

  19. Ibanez, F. and Dauvin, J.-C., Long-term changes (1977–1987) in a muddy fine sand Abra albaMelinna palmate community from Western English Channel: multivariate time-series analysis, Mar. Ecol.: Prog. Ser., 1988, vol. 49, pp. 65–81.

    Article  Google Scholar 

  20. Kokarev, V.N., Azovsky, A.I., and Kozlovsky, V.V., Current state of macrobenthic communities in Baydaratskaya Bay (Kara Sea), Oceanology (Engl. Transl.), 2015, vol. 55, no. 5, pp. 724–729.

    Article  Google Scholar 

  21. Leduc, D., Probert, P.K., and Nodder, S.D., Influence of mesh size and core penetration on estimates of deep-sea nematode abundance, biomass, and diversity, Deep Sea Res., Part I, 2010, vol. 57, no. 10, pp. 1354–1362.

    Article  Google Scholar 

  22. Legendre, P. and Legendre, L., Numerical Ecology, Amsterdam: Elsevier, 2012, 3rd ed.

    Google Scholar 

  23. Legendre, P., De Caceres, M., and Borcard, D., Community surveys through space and time: testing the space-time interaction in the absence of replication, Ecology, 2010, vol. 91, pp. 262–272.

    Article  Google Scholar 

  24. Little, R.J. and Rubin, D.B., Statistical Analysis with Missing Data, Hoboken, NJ: Wiley, 2014, 2nd ed.

    Google Scholar 

  25. Llope, M., Licandro, P., Chan, K.-S., and Stenseth, N.C., Spatial variability of the plankton trophic interaction in the North Sea: a new feature after the early 1970s, Global Change Biol., 2012, vol. 18, pp. 106–117.

    Article  Google Scholar 

  26. Lyubin, P.A., Catchability and selectivity of bottom grab and trawling gears in relation to zoobenthos organisms, Mezhdunarodnaya nauchnaya konferentsiya “Priroda morskoi Arktiki: sovremennye vyzovy i rol’ nauki,” Murmansk, 10–12 marta 2010 g., Tezisy dokladov (Int. Sci. Conf. “Nature of Marine Arctic: Modern Challenges and Role of Science,” Murmansk, March 10–12, 2010, Abstracts of Papers), Apatity: Kol’sk. Nauchn. Tsentr, Ross. Akad. Nauk, 2010, pp. 135–136.

  27. Lyubin, P.A., Comparative analysis of washing of quantitative samples of benthos used in the study in Kola Meridian transect, Tr. Kol’sk. Nauchn. Tsentra, Ross. Akad. Nauk, Okeanol., 2016, no. 3, pp. 43–63.

  28. Lyubin, P.A., Lyublina, O.S., Strelkova (Anisimova), N.A., Karsakov, A.L., Manushin, I.E., Zimina, O.L., and Frolova, E.A., Standardization of quantitative historical benthic data in the Kola section (Barents Sea) and their analysis taking into account the selectivity of methods for collecting and processing material, Tr. Kol’sk. Nauchn. Tsentra, Ross. Akad. Nauk, Okeanol., 2016, no. 3, pp. 91–102.

  29. McArdle, B.H. and Anderson, M.J., Fitting multivariate models to community data: a comment on distancebased redundancy analysis, Ecology, 2001, vol. 82, pp. 290–297.

    Article  Google Scholar 

  30. Methods for the Study of Marine Benthos, Eleftheriou, A., Ed., New York: Wiley, 2013, 4th ed.

    Google Scholar 

  31. Mokievsky, V.O., Udalov, A.A., and Azovsky, A.I., Quantitative distribution of meiobenthos in deep-water zones of the World Ocean, Oceanology (Engl. Transl.), 2007, vol. 47, no. 6, pp. 797–813.

    Article  Google Scholar 

  32. Naumov, A.D., Dvustvorchatye mollyuski Belogo morya. Opyt ekologo-faunisticheskogo analiza (Bivalves from the White Sea: Ecological-Faunistic Analysis), St. Petersburg: Zool. Inst., Ross. Akad. Nauk, 2006.

  33. Naumov, A.D., Khalaman, V.V., and Fokin, M.V., Long-term dynamics of the abundance of several intertidal polychaetes in two inlets of Kandalaksha Bay (White Sea), Russ. J. Mar. Biol., 2009, vol. 35, no. 5, pp. 381–387.

    Article  Google Scholar 

  34. Smurov, A.V. and Polishchuk, L.V., Kolichestvennye metody otsenki osnovnykh populyatsionnykh pokazatelei: statisticheskii i dinamicheskii aspekty (Quantitative Evaluation of General Population Parameters: Statistical and Dynamic Aspects), Moscow: Mosk. Gos. Univ., 1989.

  35. Souza, G.B. and Barros, F., Analysis of sampling methods of estuarine benthic macrofaunal assemblages: sampling gear, mesh size, and taxonomic resolution, Hydrobiologia, 2015, vol. 743, no. 1, pp. 157–174.

    Article  Google Scholar 

  36. Tseitlin, V.B., Mokievsky, V.O., Azovsky, A.I., and Soltwedel, T., The study of meiobenthos size structure with the sieving method (case study of the Arctic Basin free-living nematodes), Oceanology (Engl. Transl.), 2001, vol. 41, no. 5, pp. 712–717.

  37. Udalov, A.A., Azovsky, A.I., and Mokievsky, V.O., Depth-related pattern in nematode size: what does the depth itself really mean? Prog. Oceanogr., 2005, vol. 67, nos. 1–2, pp. 1–23.

    Article  Google Scholar 

  38. Zhirkov, I.A., Zhizn’ na dne. Biogeografiya i bioekologiya bentosa (Life at the Bottom. Biogeography and Bioecology of Benthos), Moscow: KMK, 2010.

  39. Zloba, E. and Yatskiv, I., Statistical methods to restore the missed data, Comp. Model. New Technol., 2002, vol. 6, no. 1, pp. 51–61.

    Google Scholar 

  40. Zuur, A.K., Ieno, E.N., and Smith, G.M., Analyzing Ecological Data, Berlin: Springer-Verlag, 2007.

    Book  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to A.D. Naumov and V.O. Mokievsky for their discussion of the study and valuable comments.

Funding

This study was supported by the Russian Science Foundation (grant no. 14-50-00029 for field research and data analysis at the Kara Sea) and the Russian Foundation for Basic Research (project nos. 15-29-02507 and 18-04-00206 for literature analysis and work preparation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Azovsky.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement of the welfare of animals. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by L. Solovyova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azovsky, A.I. Analysis of Long-Term Biological Data Series: Methodological Problems and Possible Solutions. Biol Bull Rev 9, 373–384 (2019). https://doi.org/10.1134/S2079086419050025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086419050025

Navigation