Skip to main content
Log in

Magnetic and Electrochemical Properties Study of CoFe2O4 Nanocrystals Synthesized by a Facile Hydrothermal Route

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Magnetic CoFe2O4@carbon (CFO@C) nanoparticles were synthesized by employing glucose as carbon source via hydrothermal process, and their magnetic and electrochemical properties of CFO@C are both studied in this work. The Ms and Mr values of CFO@C nanoparticles are lower than those of pure CFO samples. The changed magnetic properties may be related to the carbon layer extinguishing the surface magnetic moment with spin canting. Benefiting from the amorphous structure and good electronic conductivity of carbon shells, the CFO@C 20 wt % electrode exhibited the capacity of 201 mA h g–1 at the current density of 500 mA g–1 and high reversible capacity up to 353 mA h g–1 after 100 cycles at the current density of 50 mA g–1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Mourad, E., Coustan, L., Lannelongue, P., Zigah, D., Mehdi, A., Vioux, A., Freunberger, S.A., Favier, F., and Fontaine, O., Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors, Nat. Mater., 2016, vol. 16, p. 446.

    Article  PubMed  CAS  Google Scholar 

  2. Christudas Dargily, N., Thimmappa, R., Manzoor Bhat, Z., Devendrachari, M.C., Kottaichamy, A.R., Gautam, M., Shafi, S.P., and Thotiyl, M.O., A rechargeable hydrogen battery, J. Phys. Chem. Lett., 2018, vol. 9, p. 2492.

    Article  CAS  PubMed  Google Scholar 

  3. Thimmappa, R., Paswan, B., Gaikwad, P., Devendrachari, M.C., Makri Nimbegondi Kotresh, H., Rani Mohan, R., Pattayil Alias, J., and Thotiyl, M.O., Chemically chargeable photo battery, J. Phys. Chem. C, 2015, vol. 119, p. 14010.

    Article  CAS  Google Scholar 

  4. Bhat, Z.M., Thimmappa, R., Devendrachari, M.C., Shafi, S.P., Aralekallu, S., Kottaichamy, A.R., Gautam, M., and Thotiyl, M.O., A direct alcohol fuel cell driven by an outer sphere positive electrode, J. Phys. Chem. Lett., 2017, vol. 8, p. 3523.

    Article  CAS  PubMed  Google Scholar 

  5. Xu, J., Ma, J., Fan, Q., Guo, S., and Dou, S., Recent progress in the design of advanced cathode materials and battery models for high-performance lithium-X (X = O2, S, Se, Te, I2, Br2) batteries, Adv Mater., 2017, vol. 29, p. 1606454.

    Article  CAS  Google Scholar 

  6. Sun, C., Liu, J., Gong, Y., Wilkinson, D.P., and Zhang, J., Recent advances in all-solid-state rechargeable lithium batteries, Nano Energy, 2017, vol. 33, p. 363.

    Article  CAS  Google Scholar 

  7. Zhang, Y., Jiao, Y., Liao, M., Wang, B., and Peng, H., Carbon nanomaterials for flexible lithium ion batteries, Carbon, 2017, vol. 124, p. 79.

    Article  CAS  Google Scholar 

  8. Wei, Q., Xiong, F., Tan, S., Huang, L., Lan, E.H., Dunn, B., and Mai, L., Porous one-dimensional nanomaterials: design, fabrication and applications in electrochemical energy storage, Adv. Mater., 2017, vol. 29, p. 1602300.

    Article  CAS  Google Scholar 

  9. Cong, L., Xie, H., and Li, J., Hierarchical structures based on two-dimensional nanomaterials for rechargeable lithium batteries, Adv. Energy Mater., 2017, vol. 7, p. 1601906.

    Article  CAS  Google Scholar 

  10. Sun, Y., Liu, N., and Cui, Y., Promises and challenges of nanomaterials for lithium-based rechargeable batteries, Nature Energy, 2016, vol. 1, p. 16071.

    Article  CAS  Google Scholar 

  11. Sheng, T., Xu, Y.F., Jiang, Y.X., Huang, L., Tian, N., Zhou, Z.Y., Broadwell, I., and Sun, S.G., Structure design and performance tuning of nanomaterials for electrochemical energy conversion and storage, Acc. Chem. Res., 2016, vol. 49, p. 2569.

    Article  CAS  PubMed  Google Scholar 

  12. Ding, Y., Yang, Y., and Shao, H., Synthesis and characterization of nanostructured CuFe2O4 anode material for lithium ion battery, Solid State Ionics, 2012, vol. 217, p. 27.

    Article  CAS  Google Scholar 

  13. Sharma, Y., Sharma, N., Rao, G.V.S., and Chowdari, B.V.R., Lithium recycling behaviour of nano-phase-CuCo2O4 as anode for lithium-ion batteries, J. Power Sources, 2007, vol. 173, p. 495.

    Article  CAS  Google Scholar 

  14. Nuli, Y., Zhang, P., Guo, Z., Liu, H., and Yang, J., NiCo2O4 / C nanocomposite as a highly reversible anode material for lithium-ion batteries, Electrochem. Solid-State Lett., 2008, vol. 11, p. A64.

    Article  CAS  Google Scholar 

  15. Sharma, Y., Sharma, N., Subbarao, G., and Chowdari, B., Studies on spinel cobaltites, FeCo2O4 and MgCo2O4 as anodes for Li-ion batteries, Solid State Ionics, 2008, vol. 179, p. 587.

    Article  CAS  Google Scholar 

  16. Zhang, X., Li, D., Zhu, G., Lu, T., and Pan, L., Porous CoFe2O4 nanocubes derived from metal-organic frameworks as high-performance anode for sodium ion batteries, J. Colloid Interface Sci., 2017, vol. 499, p. 145.

    Article  CAS  PubMed  Google Scholar 

  17. Wang, Z., Fei, P., Xiong, H., Qin, C., Zhao, W., and Liu, X., CoFe2O4 nanoplates synthesized by dealloying method as high performance Li-ion battery anodes, Electrochim. Acta, 2017, vol. 252, p. 295.

    Article  CAS  Google Scholar 

  18. Wu, L., Xiao, Q., Li, Z., Lei, G., Zhang, P., and Wang, L., CoFe2O4/C composite fibers as anode materials for lithium-ion batteries with stable and high electrochemical performance, Solid State Ionics, 2012, vol. 215, p. 24.

    Article  CAS  Google Scholar 

  19. Li, Z.H., Zhao, T.P., Zhan, X.Y., Gao, D.S., Xiao, Q.Z., and Lei, G.T., High capacity three-dimensional ordered macroporous CoFe2O4 as anode material for lithium ion batteries, Electrochim. Acta, 2010, vol. 55, p. 4594.

    Article  CAS  Google Scholar 

  20. Zhu, Y., Lv, X., Zhang, L., Guo, X., Liu, D., Chen, J., and Ji, J., Liquid-solid-solution assembly of CoFe2O4/graphene nanocomposite as a high-performance lithium-ion battery anode, Electrochim. Acta, 2016, vol. 215, p. 247.

    Article  CAS  Google Scholar 

  21. Sun, X., Zhu, X., Yang, X., Sun, J., Xia, Y., and Yang, D., CoFe2O4/carbon nanotube aerogels as high performance anodes for lithium ion batteries, Green Energy Environ., 2017, vol. 2, p. 160.

    Article  Google Scholar 

  22. Maaz, K., Mumtaz, A., Hasanain, S.K., and Ceylan, A., Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route, J. Magn. Magn. Mater., 2007, vol. 308, p. 289.

    Article  CAS  Google Scholar 

  23. Nabiyouni, G., Sharifi, S., Ghanbari, D., and Salavati-Niasari, M., A simple precipitation method for synthesis CoFe2O4 nanoparticles, J. Nanostruct., 2014, vol. 4, p. 317.

    Google Scholar 

  24. Jiang, W., Liu, Y., Li, F., Chu, J., and Chen, K., Superparamagnetic cobalt-ferrite-modified carbon nanotubes using a facile method, Mater. Sci. Eng.: B, 2010, vol. 166, p. 132.

    Article  CAS  Google Scholar 

  25. Gonzalez-Sandoval, M.P., Beesley, A.M., Miki-Yoshida, M., Fuentes-Cobas, L., and Matutes-Aquino, J.A., Comparative study of the microstructural and magnetic properties of spinel ferrites obtained by co-precipitation, J. Alloys Compd., 2004, vol. 369, p. 190.

    Article  CAS  Google Scholar 

  26. Rajendran, M., Pullar, R.C., Bhattacharya, A.K., Das, D., Chintalapudi, S.N., and Majumdar, C.K., Magnetic properties of nanocrystalline CoFe2O4 powders prepared at room temperature: variation with crystallite size, J. Magn. Magn. Mater., 2001, vol. 232, p. 71.

    Article  CAS  Google Scholar 

  27. Meng, Y., Chen, D., and Jiao, X., Synthesis and characterization of CoFe2O4 hollow spheres, Eur. J. Inorg. Chem., 2008, vol. 2008, p. 4019.

    Article  CAS  Google Scholar 

  28. Nilmoung, S., Kidkhunthod, P., Pinitsoontorn, S., Rujirawat, S., Yimnirun, R., and Maensiri, S., Fabrication, structure, and magnetic properties of electrospun carbon/cobalt ferrite (C/CoFe2O4) composite nanofibers, Appl. Phys. A, 2015, vol. 119, p. 141.

    Article  CAS  Google Scholar 

  29. Varma, P.C.R., Manna, R.S., Banerjee, D., Varma, M.R., Suresh, K.G., and Nigam, A.K., Magnetic properties of CoFe2O4 synthesized by solid state, citrate precursor and polymerized complex methods: a comparative study, J. Alloys Compd., 2008, vol. 453, p. 298.

    Article  CAS  Google Scholar 

  30. García-Otero, J., Porto, M., Rivas, J., and Bunde, A., Influence of dipolar interaction on magnetic properties of ultrafine ferromagnetic particles, Phys. Rev. Lett., 2000, vol. 84, p. 167.

    Article  PubMed  Google Scholar 

  31. Wang, J., Yang, G., Wang, L., Yan, W., and Wei, W., C@CoFe2O4 fiber-in-tube mesoporous nanostructure: formation mechanism and high electrochemical performance as an anode for lithium-ion batteries, J. Alloys Compd., 2017, vol. 693, p. 110.

    Article  CAS  Google Scholar 

  32. Zhao, S., Guo, J., Jiang, F., Su, Q., and Du, G., Porous CoFe2O4 nanowire arrays on carbon cloth as binder-free anodes for flexible lithium-ion batteries, Mater. Res. Bull., 2016, vol. 79, p. 22.

    Article  CAS  Google Scholar 

  33. Zhang, W.-M., Wu, X.-L., Hu, J.-S., Guo, Y.-G., and Wan, L.-J., Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries, Adv. Funct. Mater., 2008, vol. 18, p. 3941.

    Article  CAS  Google Scholar 

  34. Zhu, T., Chen, J.S., and Lou, X.W., Glucose-assisted one-pot synthesis of FeOOH nanorods and their transformation to Fe3O4@carbon nanorods for application in lithium ion batteries, J. Phys. Chem. C, 2011, vol. 115, p. 9814.

    Article  CAS  Google Scholar 

  35. Zhang, M., Yang, X., Kan, X., Wang, X., Ma, L., and Jia, M., Carbon-encapsulated CoFe2O4/graphene nanocomposite as high performance anode for lithium ion batteries, Electrochim. Acta, 2013, vol. 112, p. 727.

    Article  CAS  Google Scholar 

  36. Qi, W., Li, P., Wu, Y., Zeng, H., Hou, L., Kuang, C., Yao, P., and Zhou, S., Facile synthesis of CoFe2O4 nanoparticles anchored on graphene sheets for enhanced performance of lithium ion battery, Progr. Nat. Sci.: Mater. Int., 2016, vol. 26, p. 498.

    Article  CAS  Google Scholar 

  37. Wang, B., Li, S., Liu, J., Yu, M., Li, B., and Wu, X., An efficient route to a hierarchical CoFe2O4@graphene hybrid films with superior cycling stability and rate capability for lithium storage, Electrochim. Acta, 2014, vol. 146, p. 679.

    Article  CAS  Google Scholar 

  38. Ren, S., Zhao, X., Chen, R., and Fichtner, M., A facile synthesis of encapsulated CoFe2O4 into carbon nanofibres and its application as conversion anodes for lithium ion batteries, J. Power Sources, 2014, vol. 260, p. 205.

    Article  CAS  Google Scholar 

  39. Xia, H., Zhu, D., Fu, Y., and Wang, X., CoFe2O4–graphene nanocomposite as a high-capacity anode material for lithium-ion batteries, Electrochim. Acta, 2012, vol. 83, p. 166.

    Article  CAS  Google Scholar 

  40. Brezesinski, T., Wang, J., Polleux, J., Dunn, B., and Tolbert, S.H., Templated nanocrystal-based porous TiO2 films for next-generation electrochemical capacitors, J. Am. Chem. Soc., 2009, vol. 131, p. 1802.

    Article  CAS  PubMed  Google Scholar 

  41. Wang, J., Polleux, J., Lim, J., and Dunn, B., Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles, J. Phys. Chem. C, 2007, vol. 111, p. 14925.

    Article  CAS  Google Scholar 

  42. Liu, T.C., Pell, W.G., Conway, B.E., and Roberson, S.L., Behavior of molybdenum nitrides as materials for electrochemical capacitors: comparison with ruthenium oxide, J. Electrochem. Soc., 1998, vol. 145, p. 1882.

    Article  CAS  Google Scholar 

  43. Wu, L., Li, H., Xie, X., Chai, K., Han, P., Zhang, C., and Yang, C., Study on the effect of liquid nitrogen cold-quenching on electrochemical characteristic of TiO2 complex flakes with edged-curled derived from MAX as anode for lithium ion batteries, J. Alloys Compd., 2019, vol. 780, p. 482.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Nature Science Foundation of China (51502258 and 51503176), Science and Technology Project of Henan province (182102210503), Department of Education Science and Technology key projects of Henan province (16A430007 and 18B150027).

Author information

Authors and Affiliations

Authors

Contributions

Hao Li designed the experiments and wrote the manuscript. Chun-Ying Chao performed analyses of TG curves and TEM images. Feng-Bo Xu and Liu-Qun Fan assembled the batteries and helped to analyses the cycle performance datas. Li-Jun Wu, Zhen-Wei Dong and Tian-Li Han helped rewrite the manuscript during the revision process. All the authors have been involved in the result discussion and data analysis process.

Corresponding author

Correspondence to Chun-Ying Chao.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

ETHICAL APPROVAL

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao Li, Xu, FB., Wu, LJ. et al. Magnetic and Electrochemical Properties Study of CoFe2O4 Nanocrystals Synthesized by a Facile Hydrothermal Route. Russ J Electrochem 55, 989–997 (2019). https://doi.org/10.1134/S1023193519080093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519080093

Keywords:

Navigation