Skip to main content
Log in

Formation of poly(ethylene glycol)-poly(ε-caprolactone) Nanoparticles via Nanoprecipitation

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Size control of therapeutic carriers in drug delivery systems has become important due to its relevance to biodistribution in the human body and therapeutic efficacy. To understand the dependence of particle size on the formation condition during nanoprecipitation method, we prepared nanoparticles from biodegradable, amphiphilic block copolymers and investigated the particle size and structure of the resultant nanoparticles according to various process parameters. We synthesized monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) block copolymer, MPEG-PCL, with different MPEG/PCL ratios via ring opening polymerization initiated from the hydroxyl end group of MPEG. Using various formulations with systematic change of the block ratio of MPEG and PCL, solvent choice, and concentration of organic phase, MPEG-PCL nanoparticles were prepared through nanoprecipitation technique. The results indicated that (i) the nanoparticles have a dual structure with an MPEG shell and a PCL core, originating from self-assembly of MPEG-PCL copolymer in aqueous condition, and (ii) the size of nanoparticles is dependent upon two sequential processes: diffusion between the organic and aqueous phases and solidification of the polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Pihlajamaki, O. Bostman, O. Tynninen, and O. Laitinen,Bone,39, 932 (2006).

    Article  Google Scholar 

  2. O. Laitinen, H. Pihlajamaki, A. Sukura, and O. Bostman,J. Biomed. Mater. Res.,61, 33 (2002).

    Article  CAS  Google Scholar 

  3. Q. Huang, D. W. Hutmacher, and E. H. Lee,Tissue Eng.,8, 469 (2002).

    Article  CAS  Google Scholar 

  4. R. C. Edwards, K. D. Kiely, and B. L. Eppley,J. Oral Maxil. Surg.,59, 19 (2001).

    Article  CAS  Google Scholar 

  5. H. Yoshimoto, Y. M. Shin, H. Terai, and J. P. Vacanti,Biomaterials,24, 2077 (2003).

    Article  CAS  Google Scholar 

  6. Y. Z. Zhang, Z. M. Huang, X. J. Xu, C. T. Lim, and S. Ramakrishna,Chem. Mater.,16, 3406 (2004).

    Article  CAS  Google Scholar 

  7. V. J. Chen, L. A. Smith, and P. X. Ma,Biomaterials,27, 3973 (2006).

    Article  CAS  Google Scholar 

  8. H. W. Ouyang, S. L. Toh, J. Goh, T. E. Tay, and K. Moe,J. Biomed. Mater. Res. B,75B, 264 (2005).

    Article  CAS  Google Scholar 

  9. W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko,J. Biomed. Mater. Res.,60, 613 (2002).

    Article  CAS  Google Scholar 

  10. Y. K. Luu, K. Kim, B. S. Hsiao, B. Chu, and M. Hadjiargyrou,J. Control. Release,89, 341 (2003).

    Article  CAS  Google Scholar 

  11. C. T. Lee, C. P. Huang, and Y. D. Lee,Biomacromolecules,7, 2200 (2006).

    Article  CAS  Google Scholar 

  12. R. T. Liggins and H. M. Burt,Int. J. Pharm.,222, 19 (2001).

    Article  CAS  Google Scholar 

  13. F. X. Hu, K. G. Neoh, and E. T. Kang,Biomaterials,27, 5725 (2006).

    Article  CAS  Google Scholar 

  14. H.Y. Lee, S. A. Yu, K. H. Jeong, and Y. J. Kim,Macromol. Res.,15, 547 (2007).

    CAS  Google Scholar 

  15. T. Govender, S. Stolnik, M. C. Garnett, L. Illum, and S. S. Davis,J. Control. Release,57, 171 (1999).

    Article  CAS  Google Scholar 

  16. H. Zhang and S. Gao,Int. J. Pharm.,329, 122 (2007).

    Article  CAS  Google Scholar 

  17. X. B. Xiong, A. Mahmud, H. Uludag, and A. Lavasanifar,Biomacromolecules,8, 874 (2007).

    Article  CAS  Google Scholar 

  18. C. Allen, Y. S. Yu, D. Maysinger, and A. Eisenberg,Bioconjugate Chem.,9, 564 (1998).

    Article  CAS  Google Scholar 

  19. G. Z. Zhu, S. R. Mallery, and S. P. Schwendeman,Nat. Biotechnol.,18, 52 (2000).

    Article  CAS  Google Scholar 

  20. M. Lee, T. T. Chen, M. L. Iruela-Arispe, B. M. Wu, and J. C. Y. Dunn,Biomaterials,28, 1862 (2007).

    Article  CAS  Google Scholar 

  21. E. Walter, K. Moelling, J. Pavlovic, and H. P. Merkle,J. Control. Release,61, 361 (1999).

    Article  CAS  Google Scholar 

  22. H. Cohen, R. J. Levy, J. Gao, I. Fishbein, V. Kousaev, S. Sosnowski, S. Slomkowski, and G. Golomb,Gene Ther.,7, 1896 (2000).

    Article  CAS  Google Scholar 

  23. X. D. Yuan, L. Li, A. Rathinavelu, J. S. Hao, M. Narasimhan, M. He, V. Heitlage, L. Tam, S. Viqar, and M. Salehi,J. Nanosci. Nanotechno.,6, 2821 (2006).

    Article  CAS  Google Scholar 

  24. J. H. You, S. W. Choi, J. H. Kim, and Y. T. Kwak,Macromol. Res.,16, 609 (2008).

    CAS  Google Scholar 

  25. S. R. Bhattarai, N. Bhattarai, H. K. Yi, P. H. Hwang, D. I. Cha, and H. Y. Kim,Biomaterials,25, 2595 (2004).

    Article  CAS  Google Scholar 

  26. S. J. Im, Y. M. Choi, E. Subramanyam, K. M. Huh, and K. Park,Macromol. Res.,15, 363 (2007).

    CAS  Google Scholar 

  27. C. Choi, M. Jang, and J. Nah,Macromol. Res.,15, 623 (2007).

    CAS  Google Scholar 

  28. C. Deng, H. Y. Tian, P. B. Zhang, J. Sun, X. S. Chen, and X. B. Jing,Biomacromolecules,7, 590 (2006).

    Article  CAS  Google Scholar 

  29. C. Park, M. Rhue, J. Lim, and C. Kim,Macromol. Res.,15, 39 (2007).

    CAS  Google Scholar 

  30. S. C. Lee, C. Kim, I. C. Kwon, H. Chung, and S. Y. Jeong,J. Control. Release,89, 437 (2003).

    Article  CAS  Google Scholar 

  31. P. Ping, W. S. Wang, X. S. Chen, and X. B. Jing,Biomacromolecules,6, 587 (2005).

    Article  Google Scholar 

  32. J. S. Lee, S. H. Kim, Y. J. Kim, T. Akaike, and S. C. Kim,Biomacromolecules,6, 1906 (2005).

    Article  CAS  Google Scholar 

  33. Z. W. Ma, C. Y. Gao, Y. H. Gong, and J. C. Shen,Biomaterials,26, 1253 (2005).

    Article  CAS  Google Scholar 

  34. S. Barbault-Foucher, R. Gref, P. Russo, J. Guechot, and A. Bochot,J. Control. Release,83, 365 (2002).

    Article  CAS  Google Scholar 

  35. S. H. Oh, S. G. Kang, E. S. Kim, S. H. Cho, and J. H. Lee,Biomaterials,24, 4011 (2003).

    Article  CAS  Google Scholar 

  36. F. L. Mi, Y. M. Lin, Y. B. Wu, S. S. Shyu, and Y. H. Tsai,Biomaterials,23, 3257 (2002).

    Article  CAS  Google Scholar 

  37. S. Y. Kim, S. H. Cho, Y. M. Lee, and L. Y. Chu,Macromol. Res.,15, 646 (2007).

    CAS  Google Scholar 

  38. J. C. Leroux, E. Allemann, F. DeJaeghere, E. Doelker, and R. Gurny,J. Control. Release,39, 339 (1996).

    Article  CAS  Google Scholar 

  39. R. Gref, Y. Minamitake, M. T. Peracchia, V. Trubetskoy, V. Torchilin, and R. Langer,Science,263, 1600 (1994).

    Article  CAS  Google Scholar 

  40. R. L. Juliano,Adv. Drug Deliver. Rev.,2, 31 (1988).

    Article  CAS  Google Scholar 

  41. V. P. Torchilin and V. S. Trubetskoy,Adv. Drug Deliver. Rev.,16, 141 (1995).

    Article  CAS  Google Scholar 

  42. S. M. Moghimi, A. C. Hunter, and J. C. Murray,Pharmacol. Rev.,53, 283 (2001).

    CAS  Google Scholar 

  43. G. Storm, S. O. Belliot, T. Daemen, and D. D. Lasic,Adv. Drug Deliver. Rev.,17, 31 (1995).

    Article  CAS  Google Scholar 

  44. Z. Gatmaitan, L. Varticovski, L. Ling, R. Mikkelsen, A. M. Steffan, and I. M. Arias,Am. J. Pathol.,148, 2027 (1996).

    CAS  Google Scholar 

  45. C. X. Song, V. Labhasetwar, H. Murphy, X. Qu, W. R. Humphrey, R. J. Shebuski, and R. J. Levy,J. Control. Release,43, 197 (1997).

    Article  Google Scholar 

  46. W. Lu, Y. Zhang, Y. Z. Tan, K. L. Hu, X. G. Jiang, and S. K. Fu,J. Control. Release,107, 428 (2005).

    Article  CAS  Google Scholar 

  47. W. S. Shim, J. S. Lee, and D. S. Lee,Macromol. Res.,13, 344 (2005).

    CAS  Google Scholar 

  48. Y. C. Dong and S. S. Feng,Biomaterials,25, 2843 (2004).

    Article  CAS  Google Scholar 

  49. S. Galindo-Rodriguez, E. Allemann, H. Fessi, and E. Doelker,Pharm. Res.,21, 1428 (2004).

    Article  CAS  Google Scholar 

  50. J. Cheng, B. A. Teply, I. Sherifi, J. Sung, G. Luther, F. X. Gu, E. Levy-Nissenbaum, A. F. Radovic-Moreno, R. Langer, and O. C. Farokhzad,Biomaterials,28, 869 (2007).

    Article  CAS  Google Scholar 

  51. K. L. Hoy,The Hoy: Tables of Solubility Parameters, Union Carbide Corporation, South Charleston, 1985.

    Google Scholar 

  52. C. M. Hansen,Hansen Solubility Parameters: A User’s Handbook, CRC Press, Boca Raton, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doo Sung Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.S., Hwang, S.J., Lee, D.S. et al. Formation of poly(ethylene glycol)-poly(ε-caprolactone) Nanoparticles via Nanoprecipitation. Macromol. Res. 17, 72–78 (2009). https://doi.org/10.1007/BF03218657

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03218657

Keywords

Navigation