Skip to main content
Log in

High-precision computation of the weak Galerkin methods for the fourth-order problem

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The weak Galerkin form of the finite element method, requiring only C0 basis function, is applied to the biharmonic equation. The computational procedure is thoroughly considered. Local orthogonal bases on triangulations are constructed using various sets of interpolation points with the Gram-Schmidt or Levenberg-Marquardt methods. Comparison and high-precision computations are carried out, and convergence rates are provided up to degree 11 for L2, 10 for H1, and 9 for H2, suggesting that the algorithm is useful for a variety of computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Pure and Applied Mathematics (Amsterdam), 2nd edn., vol. 140. Elsevier/Academic Press, Amsterdam (2003)

    Google Scholar 

  2. Arad, M., Yakhot, A., Ben-Dor, G.: A highly accurate numerical solution of a biharmonic equation. Numer. Methods Partial Differential Equations 13(4), 375–391 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berrut, J.-P., Trefethen, L.N.: Barycentric Lagrange interpolation. SIAM Rev. 46(3), 501–517 (electronic) (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burkardt, J.: The finite element basis for simplices in arbitrary dimensions (2011)

  5. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics, vol. 40, pp. xxviii+ 530. Society for Industrial and Applied Mathematics (SIAM), Philadelphia. Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)] (2002)

  6. Domínguez, V., Sayas, F.-J.: Algorithm 884: a simple Matlab implementation of the Argyris element. ACM Trans. Math. Softw. 35(2), Art. 16, 11 (2009)

    MathSciNet  Google Scholar 

  7. Dunavant, D.A.: High degree efficient symmetrical Gaussian quadrature rules for the triangle. Int. J. Numer. Methods Eng. 21(6), 1129–1148 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Durán, A.J., Van Assche, W.: Orthogonal matrix polynomials and higher-order recurrence relations. Linear Algebra Appl. 219, 261–280 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Farouki, R.T., Goodman, T.N.T., Sauer, T.: Construction of orthogonal bases for polynomials in Bernstein form on triangular and simplex domains. Comput. Aided Geom. Des. 20(4), 209–230 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gautschi, W.: Orthogonal Polynomials: Computation and Approximation. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2004). Oxford Science Publications

    MATH  Google Scholar 

  11. Guan, Q., Gunzburger, M., Zhao, W.: Weak-Galerkin finite element methods for a second-order elliptic variational inequality. Comput. Methods Appl. Mech. Eng. 337, 677–688 (2018)

    Article  MathSciNet  Google Scholar 

  12. Hesthaven, J.S.: From electrostatics to almost optimal nodal sets for polynomial interpolation in a simplex. SIAM J. Numer. Anal. 35(2), 655–676 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lyness, J.N., Jespersen, D.: Moderate degree symmetric quadrature rules for the triangle. J. Inst. Math. Appl. 15, 19–32 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  14. Monk, P.: A mixed finite element method for the biharmonic equation. SIAM J. Numer. Anal. 24(4), 737–749 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Moré, J.J.: The Levenberg-Marquardt algorithm: implementation and theory. In: Watson, G.A. (ed.) Numerical Analysis: Proceedings of the Biennial Conference Held at Dundee, June 28–July 1, 1977, pp 105–116. Springer, Berlin (1978)

  16. Mozolevski, I., Süli, E.: A priori error analysis for the hp-version of the discontinuous Galerkin finite element method for the biharmonic equation. Comput. Methods Appl. Math. 3(4), 596–607 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mu, L., Wang, J., Wang, Y., Ye, X.: A weak Galerkin mixed finite element method for biharmonic equations. In: Numerical Solution of Partial Differential Equations: Theory, Algorithms, and their Applications. Springer Proc. Math. Stat., vol. 45, pp 247–277. Springer, New York (2013)

  18. Mu, L., Wang, J., Wang, Y., Ye, X.: A computational study of the weak Galerkin method for second-order elliptic equations. Numer. Algorithms 63(4), 753–777 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mu, L., Wang, J., Ye, X.: Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes. Numer. Methods Partial Differential Equations 30(3), 1003–1029 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, C., Wang, J.: An efficient numerical scheme for the biharmonic equation by weak Galerkin finite element methods on polygonal or polyhedral meshes. Comput. Math. Appl. 68(12, part B), 2314–2330 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, C., Wang, J.: A hybridized weak Galerkin finite element method for the biharmonic equation. Int. J. Numer. Anal. Model. 12(2), 302–317 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Wang, J., Ye, X.: A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math. 241, 103–115 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, C., Wang, J.: Weak Galerkin finite element methods for elliptic PDEs. Scientia Sinica Mathematica 45(7), 1061–1092 (2015)

    Article  Google Scholar 

  24. Zhang, S.: On the full C1Qk finite element spaces on rectangles and cuboids. Adv. Appl. Math. Mech. 2(6), 701–721 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Funding

John Burkardt was supported in part by the US Air Force Office of Scientific Research grant FA9550-15-1-0001. Max Gunzburger was supported in part by the US Air Force Office of Scientific Research grant FA9550-15-1-0001. Wenju Zhao was supported in part by the US Air Force Office of Scientific Research grant FA9550-15-1-0001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenju Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burkardt, J., Gunzburger, M. & Zhao, W. High-precision computation of the weak Galerkin methods for the fourth-order problem. Numer Algor 84, 181–205 (2020). https://doi.org/10.1007/s11075-019-00751-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00751-5

Keywords

Mathematics Subject Classification (2010)

Navigation