Skip to main content

Advertisement

Log in

Magnesium Silicate Bioceramics for Bone Regeneration: A Review

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

With the increase in need of ideal bone graft materials, magnesium silicate has been explored as resorbable bioceramics. Calcium phosphate-based bioceramics are well studied and being implemented for several orthopaedic applications as they mimic the chemistry of the natural bone. Although extensively used, these materials do not satisfy all the essential requirements of an ideal temporary bone replacement material. Materials, such as tricalcium phosphate (TCP) and hydroxyapatite (HA), have low solubility and often the resorption rate is quite slow when implanted in vivo. The research on magnesium silicate for bone regenerative application is quite relatively young and a new area compared to traditional calcium phosphate-based materials. Although limited research findings have been reported, it is believed that magnesium silicate-based bioceramics may be an alternative to calcium phosphate for bone tissue engineering applications. Thus in this review, we have highlighted the importance of magnesium silicate bioceramics and compared with existing calcium phosphate ceramics. We have also analysed the future directions and the need for clinical implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Fig. 19

Similar content being viewed by others

References

  1. Saini M, Singh Y, Arora P, Arora V, Jain K (2015) Implant biomaterials: a comprehensive review. World J Clin Cases WJCC 3(1):52–57. https://doi.org/10.12998/wjcc.v3.i1.52

    Article  Google Scholar 

  2. Liu X, Ma PX (2004) Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 32(3):477–486

    Article  Google Scholar 

  3. Nabiyouni M, Brückner T, Zhou H, Gbureck U, Bhaduri SB (2018) Magnesium-based bioceramics in orthopedic applications. Acta Biomater 66:23–43. https://doi.org/10.1016/j.actbio.2017.11.033

    Article  CAS  Google Scholar 

  4. Lutton P, Ben-Nissan B (1997) The status of biomaterials for orthopedic and dental applications: part II—bioceramics in orthopedic and dental applications. Mater Technol 12(3–4):107–111. https://doi.org/10.1080/10667857.1997.11752739

    Article  Google Scholar 

  5. Saad M, Akhtar S, Srivastava S (2018) Composite polymer in orthopedic implants: a review. Mater Today Proc 5(9, Part 3):20224–20231. https://doi.org/10.1016/j.matpr.2018.06.393

    CAS  Google Scholar 

  6. Prakasam M, Locs J, Salma-Ancane K, Loca D, Largeteau A, Berzina-Cimdina L (2017) Biodegradable materials and metallic implants—a review. J Funct Biomater. https://doi.org/10.3390/jfb8040044

    Article  CAS  Google Scholar 

  7. Vallet-Regí M, González-Calbet JM (2004) Calcium phosphates as substitution of bone tissues. Prog Solid State Chem 32(1):1–31. https://doi.org/10.1016/j.progsolidstchem.2004.07.001

    Article  CAS  Google Scholar 

  8. Hofmann MP, Mohammed AR, Perrie Y, Gbureck U, Barralet JE (2009) High-strength resorbable brushite bone cement with controlled drug-releasing capabilities. Acta Biomater 5(1):43–49. https://doi.org/10.1016/j.actbio.2008.08.005

    Article  CAS  Google Scholar 

  9. Apelt D, Theiss F, El-Warrak AO, Zlinszky K, Bettschart-Wolfisberger R, Bohner M, Matter S, Auer JA, von Rechenberg B (2004) In vivo behavior of three different injectable hydraulic calcium phosphate cements. Biomaterials 25(7–8):1439–1451

    Article  CAS  Google Scholar 

  10. Devi KB, Tripathy B, Roy A, Lee B, Kumta PN, Nandi SK, Roy M (2019) In vitro biodegradation and in vivo biocompatibility of forsterite bio-ceramics: effects of strontium substitution. ACS Biomater Sci Eng 5(2):530–543. https://doi.org/10.1021/acsbiomaterials.8b00788

    Article  CAS  Google Scholar 

  11. Sheikh Z, Najeeb S, Khurshid Z, Verma V, Rashid H, Glogauer M (2015) Biodegradable materials for bone repair and tissue engineering applications. Materials 8(9):5744–5794. https://doi.org/10.3390/ma8095273

    Article  CAS  Google Scholar 

  12. Yusop AH, Bakir AA, Shaharom NA, Abdul Kadir MR, Hermawan H (2019) Porous biodegradable metals for hard tissue scaffolds: a review. https://www.hindawi.com/journals/ijbm/2012/641430/. Accessed 16 Apr 2019. https://doi.org/10.1155/2012/641430

    Article  CAS  Google Scholar 

  13. Yazdimamaghani M, Razavi M, Vashaee D, Moharamzadeh K, Boccaccini AR, Tayebi L (2017) Porous magnesium-based scaffolds for tissue engineering. Mater Sci Eng C 71:1253–1266. https://doi.org/10.1016/j.msec.2016.11.027

    Article  CAS  Google Scholar 

  14. Diba M, Fathi MH, Kharaziha M (2011) Novel forsterite/polycaprolactone nanocomposite scaffold for tissue engineering applications. Mater Lett 65(12):1931–1934. https://doi.org/10.1016/j.matlet.2011.03.047

    Article  CAS  Google Scholar 

  15. Rude RK, Gruber HE, Norton HJ, Wei LY, Frausto A, Kilburn J (2006) Reduction of dietary magnesium by only 50% in the rat disrupts bone and mineral metabolism. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA 17(7):1022–1032. https://doi.org/10.1007/s00198-006-0104-3

    Article  CAS  Google Scholar 

  16. Li H, Xue K, Kong N, Liu K, Chang J (2014) Silicate bioceramics enhanced vascularization and osteogenesis through stimulating interactions between endothelia cells and bone marrow stromal cells. Biomaterials 35(12):3803–3818. https://doi.org/10.1016/j.biomaterials.2014.01.039

    Article  CAS  Google Scholar 

  17. Devi KB, Lee B, Roy A, Kumta PN, Roy M (2017) Effect of zinc oxide doping on in vitro degradation of magnesium silicate bioceramics. Mater Lett 207:100–103. https://doi.org/10.1016/j.matlet.2017.07.052

    Article  CAS  Google Scholar 

  18. Naghiu MA, Gorea M, Mutch E, Kristaly F, Tomoaia-Cotisel M (2013) Forsterite nanopowder: structural characterization and biocompatibility evaluation. J Mater Sci Technol 29(7):628–632. https://doi.org/10.1016/j.jmst.2013.04.007

    Article  CAS  Google Scholar 

  19. Ni S, Chou L, Chang J (2007) Preparation and characterization of forsterite (Mg2SiO4) bioceramics. Ceram Int 33(1):83–88. https://doi.org/10.1016/j.ceramint.2005.07.021

    Article  CAS  Google Scholar 

  20. Wolf FI, Cittadini A (2003) Chemistry and biochemistry of magnesium. Mol Aspects Med 24(1–3):3–9

    Article  CAS  Google Scholar 

  21. Weisinger JR, Bellorín-Font E (1998) Magnesium and phosphorus. Lancet Lond Engl 352(9125):391–396. https://doi.org/10.1016/S0140-6736(97)10535-9

    Article  CAS  Google Scholar 

  22. Huang Y, Jin X, Zhang X, Sun H, Tu J, Tang T, Chang J, Dai K (2009) In vitro and in vivo evaluation of akermanite bioceramics for bone regeneration. Biomaterials 30(28):5041–5048. https://doi.org/10.1016/j.biomaterials.2009.05.077

    Article  CAS  Google Scholar 

  23. Yoshizawa S, Brown A, Barchowsky A, Sfeir C (2014) Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation. Acta Biomater 10(6):2834–2842. https://doi.org/10.1016/j.actbio.2014.02.002

    Article  CAS  Google Scholar 

  24. Gu H, Guo F, Zhou X, Gong L, Zhang Y, Zhai W, Chen L, Cen L, Yin S, Chang J et al (2011) The stimulation of osteogenic differentiation of human adipose-derived stem cells by ionic products from akermanite dissolution via activation of the ERK pathway. Biomaterials 32(29):7023–7033. https://doi.org/10.1016/j.biomaterials.2011.06.003

    Article  CAS  Google Scholar 

  25. A novel open-porous magnesium scaffold with controllable microstructures and properties for bone regeneration. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4829853/. Accessed 20 Apr 2019

  26. Rude RK, Gruber HE, Wei LY, Frausto A, Mills BG (2003) Magnesium deficiency: effect on bone and mineral metabolism in the mouse. Calcif Tissue Int 72(1):32–41. https://doi.org/10.1007/s00223-001-1091-1

    Article  CAS  Google Scholar 

  27. Rude RK, Gruber HE, Norton HJ, Wei LY, Frausto A, Kilburn J (2005) Dietary magnesium reduction to 25% of nutrient requirement disrupts bone and mineral metabolism in the rat. Bone 37(2):211–219. https://doi.org/10.1016/j.bone.2005.04.005

    Article  CAS  Google Scholar 

  28. Rude RK, Kirchen ME, Gruber HE, Stasky AA, Meyer MH (1998) Magnesium deficiency induces bone loss in the rat. Miner Electrolyte Metab 24(5):314–320

    Article  CAS  Google Scholar 

  29. Rude RK, Singer FR, Gruber HE (2009) Skeletal and hormonal effects of magnesium deficiency. J Am Coll Nutr 28(2):131–141

    Article  CAS  Google Scholar 

  30. Khan AF, Saleem M, Afzal A, Ali A, Khan A, Khan AR (2014) Bioactive behavior of silicon substituted calcium phosphate based bioceramics for bone regeneration. Mater Sci Eng C 35:245–252. https://doi.org/10.1016/j.msec.2013.11.013

    Article  CAS  Google Scholar 

  31. Szurkowska K, Kolmas J (2017) Hydroxyapatites enriched in silicon—bioceramic materials for biomedical and pharmaceutical applications. Prog Nat Sci Mater Int 27(4):401–409. https://doi.org/10.1016/j.pnsc.2017.08.009

    Article  CAS  Google Scholar 

  32. Jurkić LM, Cepanec I, Pavelić SK, Pavelić K (2013) Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid-releasing compounds: new perspectives for therapy. Nutr Metab 10:2. https://doi.org/10.1186/1743-7075-10-2

    Article  CAS  Google Scholar 

  33. Zou S, Ireland D, Brooks RA, Rushton N, Best S (2009) The effects of silicate ions on human osteoblast adhesion, proliferation, and differentiation. J Biomed Mater Res B Appl Biomater 90(1):123–130. https://doi.org/10.1002/jbm.b.31262

    Article  CAS  Google Scholar 

  34. Balamurugan A, Rebelo AHS, Lemos AF, Rocha JHG, Ventura JMG, Ferreira JMF (2008) Suitability evaluation of sol–gel derived si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response. Dent Mater Off Publ Acad Dent Mater 24(10):1374–1380. https://doi.org/10.1016/j.dental.2008.02.017

    Article  CAS  Google Scholar 

  35. Aminian A, Solati-Hashjin M, Samadikuchaksaraei A, Bakhshi F, Gorjipour F, Farzadi A, Moztarzadeh F, Schmücker M (2011) Synthesis of silicon-substituted hydroxyapatite by a hydrothermal method with two different phosphorous sources. Ceram Int 37(4):1219–1229. https://doi.org/10.1016/j.ceramint.2010.11.044

    Article  CAS  Google Scholar 

  36. Patel N, Best SM, Bonfield W, Gibson IR, Hing KA, Damien E, Revell PA (2002) A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules. J Mater Sci Mater Med 13(12):1199–1206. https://doi.org/10.1023/A:1021114710076

    Article  CAS  Google Scholar 

  37. In vivo assessment of hydroxyapatite and silicate-substituted hydroxyapatite granules using an ovine defect model | SpringerLink https://link.springer.com/article/10.1007%2Fs10856-005-6983-6. Accessed 20 Apr 2019

  38. Tavangarian F, Emadi R (2009) Mechanical activation assisted synthesis of pure nanocrystalline forsterite powder. J Alloys Compd 485(1):648–652. https://doi.org/10.1016/j.jallcom.2009.06.051

    Article  CAS  Google Scholar 

  39. Fathi MH, Kharaziha M (2008) Mechanically activated crystallization of phase pure nanocrystalline forsterite powders. Mater Lett 62(27):4306–4309. https://doi.org/10.1016/j.matlet.2008.07.015

    Article  CAS  Google Scholar 

  40. Tavangarian F, Emadi R (2010) Synthesis of pure nanocrystalline magnesium silicate powder. Ceram Silik 54(2):122–127

    CAS  Google Scholar 

  41. Kharaziha M, Fathi MH (2009) Synthesis and characterization of bioactive forsterite nanopowder. Ceram Int 35(6):2449–2454. https://doi.org/10.1016/j.ceramint.2009.02.001

    Article  CAS  Google Scholar 

  42. Sanosh KP, Balakrishnan A, Francis L, Kim TN (2010) Sol–gel synthesis of forsterite nanopowders with narrow particle size distribution. J Alloys Compd 495(1):113–115. https://doi.org/10.1016/j.jallcom.2010.01.097

    Article  CAS  Google Scholar 

  43. Jones SA, Wong S, Burlitch JM, Viswanathan S, Kohlstedt DL (1997) Sol–gel synthesis and characterization of magnesium silicate thin films. Chem Mater 9(11):2567–2576. https://doi.org/10.1021/cm970401m

    Article  CAS  Google Scholar 

  44. Li Q, Zhang J, Lu Q, Lu J, Li J, Dong C, Zhu Q (2016) Hydrothermal synthesis and characterization of ordered mesoporous magnesium silicate-silica for dyes adsorption. Mater Lett 170:167–170. https://doi.org/10.1016/j.matlet.2016.02.029

    Article  CAS  Google Scholar 

  45. Choudhary R, Chatterjee A, Venkatraman SK, Koppala S, Abraham J, Swamiappan S (2018) Antibacterial forsterite (Mg2SiO4) scaffold: a promising bioceramic for load bearing applications. Bioact Mater 3(3):218–224. https://doi.org/10.1016/j.bioactmat.2018.03.003

    Article  Google Scholar 

  46. Devi KB, Tripathy B, Kumta PN, Nandi SK, Roy M (2018) In vivo biocompatibility of zinc-doped magnesium silicate bio-ceramics. ACS Biomater Sci Eng 4(6):2126–2133. https://doi.org/10.1021/acsbiomaterials.8b00297

    Article  CAS  Google Scholar 

  47. Ramesh S, Yaghoubi A, Sara Lee KY, Christopher Chin KM, Purbolaksono J, Hamdi M, Hassan MA (2013) Nanocrystalline forsterite for biomedical applications: synthesis, microstructure and mechanical properties. J Mech Behav Biomed Mater 25:63–69. https://doi.org/10.1016/j.jmbbm.2013.05.008

    Article  CAS  Google Scholar 

  48. Anovitz LM, Rondinone AJ, Sochalski-Kolbus L, Rosenqvist J, Cheshire MC (2017) Nano-scale synthesis of the complex silicate minerals forsterite and enstatite. J Colloid Interface Sci 495:94–101. https://doi.org/10.1016/j.jcis.2017.01.052

    Article  CAS  Google Scholar 

  49. Tavangarian F, Emadi R (2011) Nanostructure effects on the bioactivity of forsterite bioceramic. Mater Lett 65(4):740–743. https://doi.org/10.1016/j.matlet.2010.11.014

    Article  CAS  Google Scholar 

  50. Saberi A, Alinejad B, Negahdari Z, Kazemi F, Almasi A (2007) A novel method to low temperature synthesis of nanocrystalline forsterite. Mater Res Bull 42(4):666–673. https://doi.org/10.1016/j.materresbull.2006.07.020

    Article  CAS  Google Scholar 

  51. Tavangarian F, Emadi R (2010) Synthesis of nanocrystalline forsterite (Mg2SiO4) powder by combined mechanical activation and thermal treatment. Mater Res Bull 45(4):388–391. https://doi.org/10.1016/j.materresbull.2009.12.032

    Article  CAS  Google Scholar 

  52. Mirhadi SM, Forghani A, Tavangarian F (2016) A modified method to synthesize single-phase forsterite nanoparticles at low temperature. Ceram Int 42(7):7974–7979. https://doi.org/10.1016/j.ceramint.2016.01.195

    Article  CAS  Google Scholar 

  53. Tavangarian F, Emadi R, Shafyei A (2010) Influence of mechanical activation and thermal treatment time on nanoparticle forsterite formation mechanism. Powder Technol 198(3):412–416. https://doi.org/10.1016/j.powtec.2009.12.007

    Article  CAS  Google Scholar 

  54. Barzegar Bafrooei H, Ebadzadeh T, Majidian H (2014) Microwave synthesis and sintering of forsterite nanopowder produced by high energy ball milling. Ceram Int 40(2):2869–2876. https://doi.org/10.1016/j.ceramint.2013.10.025

    Article  CAS  Google Scholar 

  55. Kheradmandfard M, Kashani-Bozorg SF, Noori-Alfesharaki AH, Kharazi AZ, Kheradmandfard M, Abutalebi N (2018) Ultra-fast, highly efficient and green synthesis of bioactive forsterite nanopowder via microwave irradiation. Mater Sci Eng C 92:236–244. https://doi.org/10.1016/j.msec.2018.06.026

    Article  CAS  Google Scholar 

  56. Bohner M (2009) Silicon-substituted calcium phosphates—a critical view. Biomaterials 30(32):6403–6406. https://doi.org/10.1016/j.biomaterials.2009.08.007

    Article  CAS  Google Scholar 

  57. DeVoe K, Banerjee S, Roy M, Bandyopadhyay A, Bose S (2012) Resorbable tricalcium phosphates for bone tissue engineering: influence of SrO doping. J Am Ceram Soc 95(10):3095–3102. https://doi.org/10.1111/j.1551-2916.2012.05356.x

    Article  CAS  Google Scholar 

  58. Bandyopadhyay A, Bernard S, Xue W, Bose S (2006) Calcium phosphate-based resorbable ceramics: influence of MgO, ZnO, and SiO2 dopants. J Am Ceram Soc 89(9):2675–2688. https://doi.org/10.1111/j.1551-2916.2006.01207.x

    Article  CAS  Google Scholar 

  59. Gheitanchi R, Kharaziha M, Emadi R (2017) Sr-doped forsterite nanopowder: synthesis and biological properties. Ceram Int 43(15):12018–12025. https://doi.org/10.1016/j.ceramint.2017.06.054

    Article  CAS  Google Scholar 

  60. Saqaei M, Fathi M, Edris H, Mortazavi V, Hosseini N (2016) Effects of adding forsterite bioceramic on in vitro activity and antibacterial properties of bioactive glass-forsterite nanocomposite powders. Adv Powder Technol 27(5):1922–1932. https://doi.org/10.1016/j.apt.2016.06.023

    Article  CAS  Google Scholar 

  61. Teimouri A, Ghorbanian L, Najafi Chermahini A, Emadi R (2014) Fabrication and characterization of silk/forsterite composites for tissue engineering applications. Ceram Int 40(5):6405–6411. https://doi.org/10.1016/j.ceramint.2013.12.051

    Article  CAS  Google Scholar 

  62. Furtos G, Naghiu MA, Declercq H, Gorea M, Prejmerean C, Pana O, Tomoaia-Cotisel M (2016) Nano forsterite biocomposites for medical applications: mechanical properties and bioactivity. J Biomed Mater Res B Appl Biomater 104(7):1290–1301. https://doi.org/10.1002/jbm.b.33396

    Article  CAS  Google Scholar 

  63. LeGeros RZ (2008) Calcium phosphate-based osteoinductive materials. Chem Rev 108(11):4742–4753. https://doi.org/10.1021/cr800427g

    Article  CAS  Google Scholar 

  64. Bohner M, Loosli Y, Baroud G, Lacroix D (2011) Commentary: deciphering the link between architecture and biological response of a bone graft substitute. Acta Biomater 7(2):478–484. https://doi.org/10.1016/j.actbio.2010.08.008

    Article  CAS  Google Scholar 

  65. Wu Z, Tang T, Guo H, Tang S, Niu Y, Zhang J, Zhang W, Ma R, Su J, Liu C et al (2014) In vitro degradability, bioactivity and cell responses to mesoporous magnesium silicate for the induction of bone regeneration. Colloids Surf B Biointerfaces 120:38–46. https://doi.org/10.1016/j.colsurfb.2014.04.010

    Article  CAS  Google Scholar 

  66. Bigham A, Hassanzadeh-Tabrizi SA, Rafienia M, Salehi H (2016) Ordered mesoporous magnesium silicate with uniform nanochannels as a drug delivery system: the effect of calcination temperature on drug delivery rate. Ceram Int 42(15):17185–17191. https://doi.org/10.1016/j.ceramint.2016.08.009

    Article  CAS  Google Scholar 

  67. Ghods B, Rezaei M, Meshkani F (2016) Synthesis of nanostructured magnesium silicate with high surface area and mesoporous structure. Ceram Int 42(6):6883–6890. https://doi.org/10.1016/j.ceramint.2016.01.073

    Article  CAS  Google Scholar 

  68. Hing KA (1825) Bone repair in the twenty-first century: biology, chemistry or engineering? Philos Trans A Math Phys Eng Sci 2004(362):2821–2850. https://doi.org/10.1098/rsta.2004.1466

    Article  Google Scholar 

  69. Ghomi H, Jaberzadeh M, Fathi MH (2011) Novel fabrication of forsterite scaffold with improved mechanical properties. J Alloys Compd 509(5):L63–L68. https://doi.org/10.1016/j.jallcom.2010.10.106

    Article  CAS  Google Scholar 

  70. Carter DR, Hayes WC (1976) Bone compressive strength: the influence of density and strain rate. Science 194(4270):1174–1176. https://doi.org/10.1126/science.996549

    Article  CAS  Google Scholar 

  71. Kharaziha M, Fathi MH (2010) Improvement of mechanical properties and biocompatibility of forsterite bioceramic addressed to bone tissue engineering materials. J Mech Behav Biomed Mater 3(7):530–537. https://doi.org/10.1016/j.jmbbm.2010.06.003

    Article  CAS  Google Scholar 

  72. Kwon SY, Kim YS, Woo YK, Kim SS, Park JB (1997) Hydroxyapatite impregnated bone cement: in vitro and in vivo studies. Biomed Mater Eng 7(2):129–140

  73. Vallo CI, Montemartini PE, Fanovich MA, López JMP, Cuadrado TR (1999) Polymethylmethacrylate-based bone cement modified with hydroxyapatite. J Biomed Mater Res 48(2):150–158. https://doi.org/10.1002/(SICI)1097-4636(1999)48:2%3c150:AID-JBM9%3e3.0.CO;2-D

    Article  CAS  Google Scholar 

  74. Krishnamurithy G, Mohan S, Yahya NA, Mansor A, Murali MR, Raghavendran HRB, Choudhary R, Sasikumar S, Kamarul T (2019) The Physicochemical and biomechanical profile of forsterite and its osteogenic potential of mesenchymal stromal cells. PLoS One 14(3):e0214212. https://doi.org/10.1371/journal.pone.0214212

    Article  CAS  Google Scholar 

  75. Nair MB, Bernhardt A, Lode A, Heinemann C, Thieme S, Hanke T, Varma H, Gelinsky M, John A (2009) A bioactive triphasic ceramic-coated hydroxyapatite promotes proliferation and osteogenic differentiation of human bone marrow stromal cells. J Biomed Mater Res A 90(2):533–542. https://doi.org/10.1002/jbm.a.32114

    Article  CAS  Google Scholar 

  76. Kim JA, Yun H-S, Choi Y-A, Kim J-E, Choi S-Y, Kwon T-G, Kim YK, Kwon T-Y, Bae MA, Kim NJ et al (2018) Magnesium phosphate ceramics incorporating a novel indene compound promote osteoblast differentiation in vitro and bone regeneration in vivo. Biomaterials 157:51–61. https://doi.org/10.1016/j.biomaterials.2017.11.032

    Article  CAS  Google Scholar 

  77. Li RW, Kirkland NT, Truong J, Wang J, Smith PN, Birbilis N, Nisbet DR (2014) The influence of biodegradable magnesium alloys on the osteogenic differentiation of human mesenchymal stem cells. J Biomed Mater Res A 102(12):4346–4357. https://doi.org/10.1002/jbm.a.35111

    Article  CAS  Google Scholar 

  78. Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32(11):2757–2774. https://doi.org/10.1016/j.biomaterials.2011.01.004

    Article  CAS  Google Scholar 

  79. Huang M, Zhang M, Yao D, Chen X, Pu X, Liao X, Huang Z, Yin G (2017) Dissolution behavior of CaO–MgO–SiO2-based bioceramic powders in simulated physiological environments. Ceram Int 43(13):9583–9592. https://doi.org/10.1016/j.ceramint.2017.03.130

    Article  CAS  Google Scholar 

  80. Zhang M, Chen X, Pu X, Liao X, Huang Z, Yin G (2017) Dissolution behavior of CaO–MgO–SiO2-based multiphase bioceramic powders and effects of the released ions on osteogenesis. J Biomed Mater Res A 105(11):3159–3168. https://doi.org/10.1002/jbm.a.36154

    Article  CAS  Google Scholar 

  81. Choudhary R, Manohar P, Vecstaudza J, Yáñez-Gascón MJ, Sánchez HP, Nachimuthu R, Locs J, Swamiappan S (2017) Preparation of nanocrystalline forsterite by combustion of different fuels and their comparative in-vitro bioactivity, dissolution behaviour and antibacterial studies. Mater Sci Eng, C 77:811–822. https://doi.org/10.1016/j.msec.2017.03.308

    Article  CAS  Google Scholar 

  82. O’Neill E, Awale G, Daneshmandi L, Umerah O, Lo KW-H (2018) The roles of ions on bone regeneration. Drug Discov Today 23(4):879–890. https://doi.org/10.1016/j.drudis.2018.01.049

    Article  CAS  Google Scholar 

  83. Rude RK, Gruber HE, Norton HJ, Wei LY, Frausto A, Kilburn J (2006) Reduction of dietary magnesium by only 50% in the rat disrupts bone and mineral metabolism. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA 17(7):1022–1032. https://doi.org/10.1007/s00198-006-0104-3

    Article  CAS  Google Scholar 

  84. Diba M, Goudouri O-M, Tapia F, Boccaccini AR (2014) Magnesium-containing bioactive polycrystalline silicate-based ceramics and glass-ceramics for biomedical applications. Curr Opin Solid State Mater Sci 18(3):147–167. https://doi.org/10.1016/j.cossms.2014.02.004

    Article  CAS  Google Scholar 

  85. Ou J, Kang Y, Huang Z, Chen X, Wu J, Xiao R, Yin G (2008) Preparation and in vitro bioactivity of novel merwinite ceramic. Biomed Mater Bristol Engl 3(1):015015. https://doi.org/10.1088/1748-6041/3/1/015015

    Article  CAS  Google Scholar 

  86. Iwata NY, Lee G-H, Tokuoka Y, Kawashima N (2004) Sintering behavior and apatite formation of diopside prepared by coprecipitation process. Colloids Surf B Biointerfaces 34(4):239–245. https://doi.org/10.1016/j.colsurfb.2004.01.007

    Article  CAS  Google Scholar 

  87. Chen X, Ou J, Kang Y, Huang Z, Zhu H, Yin G, Wen H (2008) Synthesis and characteristics of monticellite bioactive ceramic. J Mater Sci Mater Med 19(3):1257–1263. https://doi.org/10.1007/s10856-007-3233-0

    Article  CAS  Google Scholar 

  88. Abbasi-Shahni M, Hesaraki S, Behnam-Ghader AA, Hafezi-Ardakani M (2019) Mechanical properties and in vitro bioactivity of β-tri calcium phosphate, merwinite nanocomposites. https://www.scientific.net/KEM.493-494.582. Accessed 7 May 2019. https://doi.org/10.4028/www.scientific.net/KEM.493-494.582

  89. Hafezi M, Reza Talebi A, Mohsen Miresmaeili S, Sadeghian F, Fesahat F (2013) Histological analysis of bone repair in rat femur via nanostructured merwinite granules. Ceram Int 39(4):4575–4580. https://doi.org/10.1016/j.ceramint.2012.11.054

    Article  CAS  Google Scholar 

  90. Yang X, Xie B, Wang L, Qin Y, Henneman ZJ, Nancollas GH (2011) Influence of magnesium ions and amino acids on the nucleation and growth of hydroxyapatite. Cryst Eng Comm 13(4):1153–1158. https://doi.org/10.1039/C0CE00470G

    Article  CAS  Google Scholar 

  91. Ding H, Pan H, Xu X, Tang R (2014) Toward a detailed understanding of magnesium ions on hydroxyapatite crystallization inhibition. Cryst Growth Des 14(2):763–769. https://doi.org/10.1021/cg401619s

    Article  CAS  Google Scholar 

  92. Jin X, Chang J, Zhai W, Lin K (2011) Preparation and characterization of clinoenstatite bioceramics. J Am Ceram Soc 94(1):66–70. https://doi.org/10.1111/j.1551-2916.2010.04032.x

    Article  CAS  Google Scholar 

  93. Mostafavi K, Ghahari M, Baghshahi S, Arabi AM (2013) Synthesis of Mg2SiO4:Eu3+ by combustion method and investigating its luminescence properties. J Alloys Compd 555:62–67. https://doi.org/10.1016/j.jallcom.2012.12.022

    Article  CAS  Google Scholar 

  94. Sadeghzade S, Emadi R, Tavangarian F, Naderi M (2017) Fabrication and evaluation of silica-based ceramic scaffolds for hard tissue engineering applications. Mater Sci Eng C 71:431–438. https://doi.org/10.1016/j.msec.2016.10.042

    Article  CAS  Google Scholar 

  95. Liu Y, Liu P, Hu C (2018) Hydrothermally assisted synthesis of pure-phase and well-dispersed forsterite nanopowders. Ceram Int 44(18):23339–23343. https://doi.org/10.1016/j.ceramint.2018.09.120

    Article  CAS  Google Scholar 

  96. Fathi MH, Kharaziha M (2009) Two-step sintering of dense, nanostructural forsterite. Mater Lett 63(17):1455–1458. https://doi.org/10.1016/j.matlet.2009.03.040

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.R. would like to acknowledge the financial assistance from Science and Engineering Research Board (SERB-SB/FTP/ETA-0114/2014), Department of Science and Technology (DST), India. S.K.N. would like to acknowledge the support from the Honourable Vice Chancellor, West Bengal University of Animal and Fishery Sciences, Kolkata.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samit Kumar Nandi or Mangal Roy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bavya Devi, K., Nandi, S.K. & Roy, M. Magnesium Silicate Bioceramics for Bone Regeneration: A Review. J Indian Inst Sci 99, 261–288 (2019). https://doi.org/10.1007/s41745-019-00119-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-019-00119-7

Navigation