Skip to main content
Log in

Efficient spatial coverage by a robot swarm based on an ant foraging model and the Lévy distribution

  • Published:
Swarm Intelligence Aims and scope Submit manuscript

Abstract

This work proposes a control law for efficient area coverage and pop-up threat detection by a robot swarm inspired by the dynamical behavior of ant colonies foraging for food. In the first part, performance metrics that evaluate area coverage in terms of characteristics such as rate, completeness and frequency of coverage are developed. Next, the Keller–Segel model for chemotaxis is adapted to develop a virtual-pheromone-based method of area coverage. Sensitivity analyses with respect to the model parameters such as rate of pheromone diffusion, rate of pheromone evaporation, and white noise intensity then identify and establish noise intensity as the most influential parameter in the context of efficient area coverage and establish trends between these different parameters which can be generalized to other pheromone-based systems. In addition, the analyses yield optimal values for the model parameters with respect to the proposed performance metrics. A finite resolution of model parameter values were tested to determine the optimal one. In the second part of the work, the control framework is expanded to investigate the efficacy of non-Brownian search strategies characterized by Lévy flight, a non-Brownian stochastic process which takes variable path lengths from a power-law distribution. It is shown that a control law that incorporates a combination of gradient following and Lévy flight provides superior area coverage and pop-up threat detection by the swarm. The results highlight both the potential benefits of robot swarm design inspired by social insect behavior as well as the interesting possibilities suggested by considerations of non-Brownian noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Beckers, R., Deneubourg, J., & Goss, S. (1993). Modulation of trail laying in the ant Lasius niger (Hymenoptera: Formicidae) and its role in the collective selection of a food source. Journal of Insect Behavior, 6(6), 751–759.

    Article  Google Scholar 

  • Beckers, R., Eneubourg, J. L. D., Goss, S., & Pasteels, J. M. (1990). Collective decision making through food recruitment. Insectes Sociaux, 37(3), 258–267.

    Article  Google Scholar 

  • Beekman, M., Sumpter, D. J. T., & Ratnieks, F. L. W. (2006). Phase transition between disordered and ordered foraging in pharaoh’s ants. Proceedings of the National Academy of Sciences, 98(17), 9703–9706.

    Article  Google Scholar 

  • Biseau, J. C. D., & Pasteels, J. M. (1994). Regulated food recruitment through individual behavior of scouts in the ant, Myrmica sabuleti (Hymenoptera: Formicidae). Journal of Insect Behavior, 7(6), 767–777.

    Article  Google Scholar 

  • Blanchet, A., Dolbeault, J., Blanchet, A., Dolbeault, J., Blanchet, A., & Dolbeault, J. (2006). Two-dimensional Keller–Segel model: Optimal critical mass and qualitative properties of the solutions. Electronic Journal of Differential Equations, 44(32), 1–32.

    MathSciNet  MATH  Google Scholar 

  • Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: From natural to artificial systems. New York: Oxford University Press.

    MATH  Google Scholar 

  • Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm robotics: A review from the swarm engineering perspective. Swarm Intelligence, 7(1), 1–41.

    Article  Google Scholar 

  • Cheng, K., & Dasgupta, P. (2007). Dynamic area coverage using faulty multi-agent swarms. In IAT ’07. Proceedings of the IEEE/WIC/ACM international conference on intelligent agent technology, 2007 (pp. 17–23). IEEE.

  • Choset, H. (2001). Coverage for robotics—A survey of recent results. Annals of Mathematics and Artificial Intelligence, 31(1–4), 113–126.

    Article  MATH  Google Scholar 

  • Clauset, A., Shalizi, C. R., & Newman, M. E. J. (2009). Power-law distributions in empirical data. SIAM Review, 51(4), 661–703.

    Article  MathSciNet  MATH  Google Scholar 

  • Codling, E., Plank, M. J., & Benhamou, S. (2008). Random walk models in biology. Journal of The Royal Society Interface, 5(25), 813–834.

    Article  Google Scholar 

  • Deneubourg, J., Aron, S., Goss, S., & Pasteels, J. (1990). The self-organizing exploratory pattern of the argentine ant. Journal of Insect Behavior, 3(2), 159–168.

    Article  Google Scholar 

  • Dimidov, C., Oriolo, G., & Trianni, V. (2016). Random walks in swarm robotics: An experiment with kilobots. In Swarm intelligence: 10th international conference, ANTS 2016, LNCS 9882 (pp. 185–196). Springer.

  • Dorigo, M., & Birattari, M. (2007). Swarm intelligence. Scholarpedia, 2(9), 1462.

    Article  Google Scholar 

  • Dorigo, M., Birattari, M., & Brambilla, M. (2014). Swarm robotics. Scholarpedia, 9(1), 1463.

    Article  Google Scholar 

  • Dussutour, A., Beekman, M., Nicolis, S. C., & Meyer, B. (2009). Noise improves collective decision-making by ants in dynamic environments. Proceedings of the Royal Society B, 273(September), 4353–4361.

    Article  Google Scholar 

  • Dussutour, A., Fourcassie, V., Helbing, D., & Deneubourg, J. (2004). Optimal traffic organization in ants under crowded conditions. Nature, 428(March), 4–7.

    Google Scholar 

  • Fontelos, M. A., & Friedman, A. (2015). A PDE model for the dynamics of trail formation by ants. Journal of Mathematical Analysis and Applications, 425(1), 1–19.

    Article  MathSciNet  MATH  Google Scholar 

  • Fujisawa, R., Dobata, S., Sugawara, K., & Matsuno, F. (2014). Designing pheromone communication in swarm robotics: Group foraging behavior mediated by chemical substance. Swarm Intelligence, 8(3), 227–246.

    Article  Google Scholar 

  • Gardiner, C. (2004). Handbook of stochastic methods for physics, chemistry and natural sciences. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Gaudiano, P., Shargel, B., Bonabeau, E., & Clough, B. T. (2003). Swarm intelligence: A new C2 paradigm with an application to control swarms of UAVs. Technical report, Ft. Belvoir Defense Technical Information Center.

  • Horstmann, D. (2002). From 1970 until present: The Keller–Segel model in chemotaxis and its consequences I. Jahresbericht der Deutschen-Mathematiker Vereinigung, 105(3), 103–165.

    MathSciNet  MATH  Google Scholar 

  • Humphries, N. E., Weimerskirch, H., Queiroz, N., Southall, E. J., & Sims, D. W. (2012). Foraging success of biological Lévy flights recorded in situ. Proceedings of the National Academy of Sciences, 109(19), 7169–7174.

    Article  Google Scholar 

  • Humphries, N. E., Weimerskirch, H., & Sims, D. W. (2013). A new approach for objective identification of turns and steps in organism movement data relevant to random walk modelling. Methods in Ecology and Evolution, 4(10), 930–938.

    Google Scholar 

  • Janssen, H., Oerdling, K., van Wijland, F., & Hilhorst, H. (1999). Lévy-flight spreading of epidemic processes leading to percolating clusters. European Physics Journal B, 7(1), 137–145.

    Article  Google Scholar 

  • Krieger, M. J., Billeter, J. B., & Keller, L. (2000). Ant-like task allocation and recruitment in cooperative robots. Nature, 406(August), 992–995.

    Google Scholar 

  • Kuiper, E., & Nadim-Tehrani, S. (2006). Mobility models for UAV Group reconnaissance applications. In ICWMC ’06. Proceedings of the international conference on wireless and mobile communications, 2006 (pp. 33–40). XPS.

  • Mantegna, R. N., & Stanley, H. E. (1995). Scaling behaviour in the dynamics of an economic index. Nature, 376(6535), 46–49.

    Article  Google Scholar 

  • Nicolis, S. C., & Deneubourg, J. (1999). Emerging patterns and food recruitment in ants: An analytical study. Journal of Theoretical Biology, 198, 575–592.

    Article  Google Scholar 

  • Nouyan, S., Campo, A., & Dorigo, M. (2008). Path formation in a robot swarm: Self-organized strategies to find your way home. Swarm Intelligence, 2(1), 1–23.

    Article  Google Scholar 

  • Nurzaman, S. G., Matsumoto, Y., Nakamura, Y., Koizumi, S., & Ishiguro, H. (2010). Biologically Inspired adaptive mobile robot search with and without gradient sensing. In IROS 2009. Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, 2009 (pp. 142–147). IEEE.

  • Parunak, H. V. D., & Brueckner, S. A. (2001). Entropy and self-organization in multi-agent systems. In: AGENTS ’01 proceedings of the 5th international conference on autonomous agents (pp. 124–130). ACM.

  • Parunak, H. V. D., Brueckner, S. A., & Odell, J. J. (2003). Swarming coordination of multiple UAV’s for collaborative sensing. In Proceedings of the 2nd AIAA “unmanned unlimited” conference and workshop (pp. 1–9). AIAA.

  • Perna, A., Granovskiy, B., Garnier, S., Nicolis, S. C., Labédan, M., Theraulaz, G., et al. (2012). Individual rules for trail pattern formation in Argentine ants (Linepithema humile). PLoS Computational Biology, 8(7), 1–12.

    Article  MathSciNet  Google Scholar 

  • Raichlen, D. A., Wood, B. M., Gordon, A. D., Mabulla, A. Z. P., Marlowe, F. W., & Pontzer, H. (2013). Evidence of Lévy walk foraging patterns in human hunter-gatherers. Proceedings of the National Academy of Sciences, 111(2), 728–733.

    Article  Google Scholar 

  • Ramakrishnan, S., & Kumar, M. (2010). Synthesis and analysis of control laws for swarm of mobile robots emulating ant foraging behavior. In Proceedings of the ASME dynamics systems and control conference (pp. 647–652). ASME.

  • Ramakrishnan, S., Laurent, T., Kumar, M., & Bertozzi, A. L. (2014). Spatiotemporal chemotactic model for ant foraging. Modern Physics Letters B, 28(30), 1450238.

    Article  Google Scholar 

  • Ranjbar-Sahraei, B., Weiss, G., & Nakisaee, A. (2012). A multi-robot coverage approach based on stigmergic communication. In: Multiagent system technologies. MATES 2012, LNCS 7598 (pp. 126–138). Springer.

  • Robinson, E. J. H., Ratnieks, F. L. W., & Holcombe, M. (2008). An agent-based model to investigate the roles of attractive and repellent pheromones in ant decision making during foraging. Journal of Theoretical Biology, 255(2), 250–258.

    Article  MathSciNet  Google Scholar 

  • Rossi, L., & Johnson, K. (2006). A mathematical and experimental study of ant foraging trail dynamics. Journal of Theoretical Biology, 241, 360–369.

    Article  MathSciNet  Google Scholar 

  • Russell, R. A. (1999). Odour detection by mobile robots. River Edge, NJ: World Scientific.

    Book  MATH  Google Scholar 

  • Sauter, J. A., Matthews, R., Parunak, H. V. D., & Brueckner, S. A. (2005). Performance of digital pheromones for swarming vehicle control. In Proceedings of fourth international joint conference on autonomous agents and multi-agent systems (pp. 903–910). ACM.

  • Scheutz. M. (2006). A scalable, robust, ultra-low complexity agent swarm for area coverage and interception tasks. In Proceedings of the IEEE international symposium on intelligent control (pp. 1258–1263). IEEE.

  • Schweitzer, Frank, & Schimansky-Geier, L. (1994). Clustering of active walkers in a two-component system. Physics A, 206, 359–379.

    Article  Google Scholar 

  • Sims, D. W., Reynolds, A. M., Humphries, N. E., Southall, E. J., Wearmouth, V. J., Metcalfe, B., et al. (2014). Hierarchical random walks in trace fossils and the origin of optimal search behavior. Proceedings of the National Academy of Sciences, 111(30), 11,073–11,078.

    Article  Google Scholar 

  • Sims, D. W., Southall, E. J., Humphries, N. E., Hays, G. C., Bradshaw, C. J. A., Pitchford, J. W., et al. (2008). Scaling laws of marine predator search behaviour. Nature, 451(7182), 1098–1102.

    Article  Google Scholar 

  • Singh, R. K., & Jain, N. (2014). Comparative study of multi-robot area exploration algorithms. International Journal of Advanced Research in Computer Science and Software Engineering, 4(8), 778–786.

    Google Scholar 

  • Smith, G., Sanders, J. W., & Li, Q. (2015). A macro-level model for investigating the effect of directional bias on network coverage. In Proceedings of the 38th Australasian computer science conference (ASSC) (pp. 73–81). ACS.

  • Sutantyo, D. K., Kernbach, S., Nepomnyashchikh, V. A., & Levi, P. (2010). Multi-robot searching algorithm using Lévy flight and artificial potential field. In Proceedings of the IEEE international workshop on safety, security, and rescue robotics (pp. 1–6). IEEE.

  • Viswanathan, G. M. (2011). The physics of foraging. New York: Cambridge University Press.

    Book  Google Scholar 

  • Viswanathan, G. M., Afanasyev, V., Buldyrev, S. V., Murphy, E. J., Prince, P. A., & Stanley, H. E. (1996). Lévy flight search patterns of wandering albatrosses. Nature, 381(6581), 413–415.

    Article  Google Scholar 

  • Wang, Y., Liang, A., & Guan, H. (2011). Frontier-based multi-robot map exploration using particle swarm optimization. In Proceedings of the 2011 IEEE symposium on swarm intelligence (SIS) (pp. 1–6). IEEE.

  • Yanovski, V., Wagner, I. A., & Bruckstein, A. M. (2001). Vertex-ant-walk—A robust method for efficient exploration of faulty graphs. Annals of Mathematics and Artificial Intelligence, 31(1–4), 99–112.

    Article  MathSciNet  MATH  Google Scholar 

  • Yanovski, V. M., Wagner, I. A., & Bruckstein, A. M. (2000). Edge ant walk for patrolling networks. In Proceedings of the 10th international workshop on ant algorithms (pp. 1–4).

  • Yates, C. A., Erban, R., Escudero, C., Couzin, I. D., Buhl, J., Kevrekidis, I. G., et al. (2009). Inherent noise can facilitate coherence in collective swarm motion. Proceedings of the National Academy of Sciences USA, 106(114), 5464–5469.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Schroeder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schroeder, A., Ramakrishnan, S., Kumar, M. et al. Efficient spatial coverage by a robot swarm based on an ant foraging model and the Lévy distribution. Swarm Intell 11, 39–69 (2017). https://doi.org/10.1007/s11721-017-0132-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11721-017-0132-y

Keywords

Navigation